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Abstract

Rapid proliferation and increasing sophistication of cyberattacks pose formidable challenges
to traditional intrusion and malware detection methods, especially with regard to accuracy,
scalability, interpretability, and real-time responsiveness. Addressing these critical issues,
this dissertation proposes an integrated Al-powered threat detection framework that ad-
vances the state of large-scale cybersecurity defense across three tightly connected research
threads.

First, to overcome the pervasive class imbalance and high-dimensional feature redun-
dancy in cybersecurity datasets, an innovative data-centric pipeline is introduced. This
pipeline proposes a method to augment the quality of the training dataset by compressing
samples in the majority classes and generating more realistic samples in minority classes;
determining the optimal feature set to enhance efficiency regarding detection rate. The
result is a balanced and meaningful training set that significantly improves the detection of
minority and emerging threats, laying a robust data foundation for subsequent modeling.

Second, leveraging this enhanced dataset, the dissertation develops a mutual deep+boosting
ensemble approach that fuses the strengths of neural networks and advanced boosting
models. We employ an ensemble of mutual deep learning and gradient-boosting inference,
initially for voting among multiple Al-based classifiers, followed by stacking individual and
voting probability predictions to improve malware detection and reduce vulnerability to
model poisoning.

Third, to bridge the gap between research prototypes and real-world deployment, the
dissertation presents NetIPS, a scalable, real-time intrusion prevention system. NetIPS
integrates dynamic flow sensing with parallel ensemble inference and sandbox, enabling
the system to focus computational resources on high-risk traffic and maintain wire-speed
performance in large-scale operational environments.

Extensive experiments on multiple benchmark datasets, such as CSE-CIC-IDS2018,
NSL-KDD, EMBER, and BODMAS, demonstrate the effectiveness of the proposed meth-
ods, with clear improvements in recall, overall accuracy, model transparency, and readiness
for deployment. The dissertation contributions are supported by 03 SCI/E-indexed journal
articles and 04 WoS-indexed conference articles. Together, this work delivers a coherent
scientific foundation and a practical roadmap for developing next-generation, explainable,

and deployable Al-powered cyber defense systems.
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Introduction

Motivation

Recently, the increasing wave of cyberattacks has underscored the urgent need for more
intelligent, adaptive and scalable threat detection systems. As digital transformation accel-
erates across critical domains ranging from government and healthcare to financial services
and industrial control systems, cybersecurity has transitioned from a technical concern
to a national security imperative [61, 16]. The increasing dependence on interconnected
systems, cloud services, and ubiquitous computing platforms has significantly expanded the
attack surface, providing adversaries with more entry points, vectors, and opportunities for
disruption.

Although cybersecurity tools have traditionally relied on signature-based and rule-driven
detection mechanisms, such approaches struggle to keep pace with modern threats [15, 16].
Static rule engines are inherently reactive: they are only as effective as the knowledge base
that drives them. This limitation makes them vulnerable to zero-day attacks, polymorphic
malware, and adversarial evasion techniques. In addition, traditional intrusion detection
systems (IDS) often produce too many false alarms, struggle to handle new types of data,
and do not adapt well to changing network conditions. These systemic shortcomings call
for a paradigm shift towards Al-powered detection frameworks that can learn from data,
recognize evolving attack patterns, and generalize beyond known threats.

The application of machine learning (ML) and deep learning (DL) in cybersecurity offers
a promising pathway to enhance threat detection capabilities [50, 52, 105, 22, 67]. By
learning from vast datasets of network traffic, system logs, and binary executables, these
models can automatically identify patterns associated with malicious behavior, often with
minimal human supervision. However, the practical deployment of ML/DL in cyberse-
curity is fraught with its set of challenges [75]. Unlike controlled environments in other
ML domains, such as image classification or language modeling, cybersecurity data are
inherently noisy, imbalanced, high-dimensional, and subject to adversarial interference.
These characteristics pose unique difficulties for both learning and generalization.

One of the most pressing concerns is the issue of class imbalance in cybersecurity datasets
[25].  Most publicly available intrusion and malware datasets contain an overwhelming
proportion of benign samples and a relatively small number of malicious instances. Further-
more, within the malicious category, attack types are often unevenly distributed with a few

dominant classes overshadowing rarer but equally dangerous threats. This imbalance biases
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Introduction

learning algorithms toward majority classes and severely impairs their ability to detect
minority classes, which often represent zero-day or advanced persistent threats (APTS).
The consequence is a high false-negative rate and an unacceptable failure mode for any
intrusion detection system.

Equally problematic is the heterogeneity and complexity of feature spaces in cyber threat
datasets. Network traffic data and executable files often contain hundreds or thousands of
features, many of which are redundant, irrelevant, or weakly correlated with the target
classes. Training ML models with such data increases computational complexity and
introduces noise that dilutes the learning signal. Furthermore, complex deep learning
models like convolutional neural networks (CNNs) and recurrent neural networks (RNNs)
are very effective in learning patterns, but they work like “black boxes,” meaning that we
cannot easily understand how they make decisions, which is a big problem in security-
sensitive areas where we need to explain, audit, and trust the results.

Another obstacle arises from the lack of real-time inference capability in many existing
systems [1]. Although high detection accuracy is possible in controlled settings, using these
models in real-world situations such as data centers or edge devices often shows serious
problems with speed, capacity, and flexibility. The need for lightweight, scalable, and
ensemble-capable solutions has never been more pronounced.

Motivated by these challenges, this dissertation proposes a unified research roadmap
that seeks to improve learning performance, resilience, and explainability in Al-based
malware and intrusion detection systems. By integrating methods for balancing dataset,
feature refinement, model-specific optimization, and multimodel inference, the goal is to
design systems that are not only accurate but also robust, interpretable, and deployable in
realistic operational contexts. Through this lens, the dissertation aims to contribute both
theoretically and practically to the next generation of intelligent cybersecurity systems that
are not only technically sound but also operationally viable in the ongoing arms race against
cyber adversaries.

The increasing size, variety, and complexity of today’s cyberattacks, particularly those
using clever and changing methods, have shown that traditional detection and prevention
systems have serious weaknesses. Although recent advances in machine learning and deep
learning have shown promise in addressing some of these challenges, many existing ap-
proaches continue to struggle with critical issues such as data imbalance, feature redundancy,
model interpretability, and real-time operational constraints. Addressing these unresolved
gaps and pushing the boundaries of intelligent, scalable, and explainable threat detection
forms the core motivation for this dissertation. However, these studies still have certain

limitations and there is much room for improvement. This is the main motivation for us
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to carry out this dissertation.

Research Challenges

Despite remarkable advances in artificial intelligence (AI), deploying effective malware and
intrusion detection systems in real-world environments remains difficult due to a combina-
tion of technical, operational, and structural challenges. This dissertation focuses on three
core research areas, balancing dataset, robustness and generalization of ensemble learning

models, and scalable real-time detection, and identifies the following major challenges:

1. Challenge 1: Cybersecurity datasets are heavily imbalanced, with the vast majority
of samples belonging to benign traffic or a few common attack types, while rare but
dangerous threats (e.g., infiltration, exfiltration, and zero-day attacks) are underrep-
resented. This leads to biased model learning and poor detection of minority attacks.
Conventional oversampling methods, such as SMOTE, often focus on increasing the
sample quantity without preserving semantic fidelity, risking the introduction of noisy
or unrealistic samples. In cybersecurity, where context and behavior define threat
patterns, careless augmentation can degrade model performance and even create arti-
facts. Thus, there is a critical need for sophisticated quality-driven data enrichment
methods that leverage adversarial generation and clustering-based filtering to produce
meaningful and semantically coherent samples for underrepresented classes, enhancing

model learning without overfitting.

2. Challenge 2: Achieving high accuracy and low false positive rates in Al-powered
intrusion detection systems, while maintaining overall system performance and in-
terpretability, remains a persistent challenge. Boosting and deep learning models
need to be carefully integrated and configured to balance accuracy, efficiency, and
robustness. The challenge lies in selecting appropriate models for each dataset and
effectively combining machine learning models to maximize performance and enhance

system resilience in intrusion detection.

3. Challenge 3: For Al-powered intrusion detection systems to be operationally viable,
they must process large volumes of traffic at wire speed with minimal delay. However,
the computational complexity of machine learning models often hinders real-time
deployment. The challenge lies in designing lightweight, scalable model architectures
to maintain detection quality while ensuring high throughput and low latency. The in-
herent computational complexity of advanced Al models makes it difficult to maintain

both high throughput and reliable performance in demanding real-world environments.
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Together, these challenges underscore the need for a multifaceted detection framework
that integrates data-centric augmentation, ensemble learning, explainability, and architec-
tural optimization. The solutions proposed in this dissertation aim to bridge these gaps with
validated improvements across detection accuracy, robustness, scalability, and operational

interpretability.

Research Objectives

This dissertation focuses on the development of Al-powered threat detection systems that
are not only accurate and robust, but also scalable and interpretable for real-world deploy-
ment. To achieve this overarching goal, the research is structured around the following three
core objectives, each corresponding to a major contribution presented in Chapter 1, Chap-

ter 2, Chapter 3, and Chapter 4:

e Objective 1: An overview of cyberattacks and the techniques used by hackers to carry
out such attacks. Research intrusion and malware detection techniques and analyze
the advantages and disadvantages of each method. Evaluate the results of the latest

research related to the problem of intrusion detection.

e Objective 2: We propose a augmentation dataset method that aims to improve the
quality of minority attack samples, select the most representative samples from the
majority classes; minimize training noise by identifying important features within the
dataset. This approach improves the quality of the training dataset and boosts the
performance of machine learning models. This objective arises from the fact that
cybersecurity datasets often suffer from severe class imbalance, where minority attack

types are underrepresented, or the feature space is highly dimensional.

e Objective 3: Traditional intrusion detection methods often struggle with generalization
and robustness against novel or adversarial attacks. This objective aims to integrate
neural networks with boost models through soft voting and stacking strategies. The
goal is to take advantage of the complementary strengths of each type of model to
improve the accuracy of the classification in both host-based and network-based threat
detection. Specifically, we employ an ensemble of mutual deep learning and gradient-
boosting inference, initially using soft voting among multiple Al-based classifiers,
followed by stacking the individual and voting probability predictions to enhance

malware detection and reduce vulnerability to model poisoning.

e Objective 4: Al-based detection systems often suffer from inference latency and limited

scalability. This objective aims to design a lightweight, high-throughput detection

4
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architecture with support for flow-based sensing and parallel ensemble inference. The
resulting system is implemented in the user space and is evaluated under simulated

network conditions to validate low-latency operation and reliable threat detection.

These objectives form the foundation for the dissertation’s contributions to practical and

theoretical advancements in Al-driven cybersecurity detection systems.

Research Scope

To achieve the objectives of this dissertation, we focus on the following key areas:

1. Research data structures and class imbalance in intrusion detection datasets and study

machine learning and deep learning models for their effectiveness.

2. Research focuses on building lightweight high-throughput detection architectures suit-

able for real-time deployment in large-scale networks.

Research Methodologies

This dissertation employs a systematic and layered research methodology, as outlined below:

e Theoretical Methodology: We conduct a comprehensive survey, synthesis, and
evaluation of previous research relevant to intrusion detection and malware classifica-
tion. The focus is on analyzing prior solutions to class imbalance, real-time detection
bottlenecks, and the lack of explainability in Al-based security models. The literature
is collected from highly regarded sources such as IEEE Xplore, ACM Digital Library,
SpringerLink, ScienceDirect, and Wiley Online Library. From this review, we find
research gaps and suggest ways to improve learning performance, detection strength,

and understanding of models.

e Experimental Methodology: The proposed frameworks and algorithms are em-
pirically validated through extensive experiments on multiple benchmark datasets,

including public and custom-prepared corpora, specifically:

— For balancing dataset, the methodology leverages an advanced adversarial aug-
mentation dataset, feature optimization on datasets such as CSE-CIC-IDS2018,
EMBER. The effectiveness in improving minority class detection and generaliza-

tion is thoroughly evaluated.
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— For robust mutual deep+boosting ensemble inference, the experimental setup
integrates Neural Networks with gradient boosting models, employing soft voting
and stacking. Performance is evaluated on both network-based intrusion and host-
based malware classification tasks (e.g. NSL-KDD, BODMAS), with emphasis on

accuracy, robustness, and model interpretability.

All algorithms are implemented in Python utilizing frameworks such as PyTorch,
scikit-learn. Experimental results are rigorously compared with current state-of-the-
art baselines, using standard metrics including accuracy, precision, recall, F1 score,

AUC, and model explainability indicators.

Research Contributions

This dissertation presents a series of technical contributions that collectively advance the
design, robustness, and deployability of Al-powered malware and intrusion detection sys-

tems. The key contributions are as follows:

1. We propose methods for augmentation dataset and feature set optimization. The
approach integrates adversarial sample generation to enrich the minority class and em-
ploys filtering techniques to retain only semantically meaningful samples from the ma-
jority class. Additionally, for high-dimensional datasets, we perform rigorous feature
selection to minimize redundancy while preserving the most discriminative attributes.
This method significantly improves the ability to correctly identify the minority class
and improves the overall performance of the model, as shown in tests on standard
datasets such as CSE-CIC-IDS2018. This contribution is derived from Chapter 2 and
supported by VVH-J1, VVH-J2, VVH-J3, VVH-C2 and VVH-C4, as these works detail

advanced augmentation dataset, feature optimization.

2. We propose an integrated ensemble architecture that combines neural networks with
boosting classifiers using both soft voting and stacking strategies. This hybrid frame-
work leverages the complementary strengths of deep learning and tree-based models
to enhance detection accuracy, robustness, and interpretability. Furthermore, by
diversifying the modeling approaches, our method reduces vulnerability to model
poisoning attacks and increases overall system resilience. Tests on well-known datasets
show that the proposed combination of models consistently performs better than using
only one model alone. This contribution is developed in Chapter 3 and informed by
VVH-J1, VVH-J3, VVH-C1, and VVH-C3, focusing on mutual ensemble inference

soft voting and stacking.
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3. We design and implement NetIPS, a lightweight and real-time intrusion detection
and prevention architecture optimized for large-scale network environments. Our
system integrates signature-based detection, deep analysis, and behavioral analysis
to achieve comprehensive intrusion detection. A dedicated analysis strategy is devel-
oped to coordinate these detection techniques optimally, allowing the system to take
advantage of the unique strengths of each approach and ensure scalability for large
network deployments. Evaluation on well-known benchmark datasets demonstrates
that NetIPS achieves real-time performance without compromising detection quality.
This contribution corresponds to Chapter 4 and is supported by VVH-J1, VVH-J2, and
VVH-C1, validating the effectiveness of flow sensing, parallel inference, and practical

implementation of NetIPS in large-scale environments.

Thesis Structure

This dissertation is structured into four chapters, each contributing to a cohesive research
trajectory that spans data preparation, model development, and real-world deployment of

Al-powered threat detection systems:

e Chapter 1 This chapter presents essential background knowledge in intrusion and
malware detection, with an emphasis on machine learning, deep learning, and ensemble
techniques. The chapter discusses common challenges such as class imbalance, high-
dimensional data, and model interpretability. A comprehensive survey of existing work

is conducted to identify research gaps and justify the proposed directions.

e Chapter 2 proposes augmentation dataset methods for machine learning, focusing
on addressing the imbalance between minority and majority classes in the dataset.
With the proposed approaches, the majority classes are sampled to select the most
representative instances for training, while new high-quality samples are generated
for the minority classes to ensure that both quantity and quality are on par with
the majority classes, thereby balancing the class distribution for model training. In
addition, the feature selection method helps to identify important and contributing
features during training, eliminating low-value features to enhance model performance.
This approach effectively addresses the problem of imbalance in the dataset for model

training, ultimately improving the overall performance of the models.

e Chapter 3 focuses on improving machine learning models to enhance performance.
The chapter proposes combining and mutually reinforcing different types of models

to increase intrusion detection effectiveness and system robustness. Each model has
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its own strengths, and their integration allows them to complement each other, thus
improving detection capabilities and compensating for each other’s limitations and

reducing vulnerability to model poisoning.

Chapter 4 proposes a practical deployment approach for intrusion detection systems
in large-scale networks. A comprehensive process for intrusion detection is introduced
that integrates both signature-based and behavior-based analysis, along with execu-
tion and sampling strategies. This forms a solution that enables the deployment of
intrusion detection systems in large-scale network environments. With this approach,
system performance is enhanced, analysis time is minimized, and the strengths of each
component are maximized, enabling efficient and scalable intrusion detection for large

networks.



Chapter 1

Preliminaries and Literature Reviews

This chapter provides the essential theoretical foundation and a comprehensive overview
of the existing research landscape relevant to Al-powered intrusion and malware detection.
First, it introduces fundamental concepts such as intrusion detection systems (IDS), mal-
ware detection, and the application of machine learning techniques in cybersecurity. Next,
it discusses critical challenges, including class imbalance, high-dimensional dataset, and the
need for model interpretability in real-world threat detection scenarios.

Furthermore, the chapter surveys state-of-the-art approaches and related work in the
fields of augmentation dataset, machine learning model approach for both network-based
and host-based intrusion detection. By synthesizing recent advances and highlighting
unresolved issues, this chapter establishes the context and motivation for the novel method-
ologies and solutions proposed in subsequent chapters. In general, Chapter 1 aims to equip
the reader with the foundational knowledge and critical perspective necessary to understand

the research contributions and innovations presented in this dissertation.

1.1 Fundamental Concepts

1.1.1 Intrusion Detection System

Intrusion Detection Systems (IDS) are a fundamental component in modern cybersecurity
infrastructure, designed to monitor system or network activity for signs of malicious be-
havior or policy violations [16, 83]. The core function of an IDS is to detect attempts at
unauthorized access, exploit vulnerabilities, or anomalous behavior indicative of potential
attacks. IDS solutions serve as a critical line of defense in preventing, identifying, and
responding to cyber threats in real time or near real time. Depending on the deployment
architecture, IDS can be broadly categorized into two types:

Network-based IDS (NIDS): These systems monitor incoming and outgoing traffic across
network segments. They analyze packet data, protocol behavior, and traffic patterns to
detect suspicious activity [35, 81]. NIDSs are commonly deployed at perimeter points (e.g.,
gateways, firewalls) and are effective in identifying threats such as denial-of-service (DoS)
attacks, port scanning, or brute-force attempts.

Host-Based IDS (HIDS): These systems are installed on individual hosts or endpoints and
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are responsible for monitoring system-level activities such as file changes, process execution,
registry modifications, or user behavior [114, 56]. HIDS is particularly useful for detecting
malware infections, privilege escalations, and unauthorized system access that may not
be visible from the network layer. In terms of detection techniques, IDS are commonly
classified as follows:

Signature-based detection: This approach relies on a database of known attack signatures
or predefined [26, 28]. Although highly effective in detecting previously identified threats,
it cannot detect novel or obfuscated attacks, including zero-day exploits.

Anomaly-based detection: These systems learn the normal behavior of users, systems, or
networks and flag deviations from the learned patterns as potential intrusions. Anomaly-
based methods offer improved generalization to unknown attacks, but often suffer from high
false-positive rates due to the variability of legitimate behavior. Recent advances in artificial
intelligence, particularly machine learning (ML) and deep learning (DL) [6, 40], have
enabled a shift from static signature-based models to data-driven adaptive IDS. ML-based
IDS can learn complex patterns from historical data and generalize to previously unseen
threat variants, making them more suitable for evolving and dynamic attack environments.
However, the practical deployment of such systems remains challenging due to issues such
as data imbalance, adversarial evasion, and real-time performance constraints challenges,
which are directly addressed in the subsequent chapters of this dissertation.

Malware, short for malicious software, refers to any software intentionally designed
to cause damage, unauthorized access, data theft, or disruption to computer systems,
networks, or users [107]. It encompasses a wide range of threat types, but is not limited
to viruses, worms, trojans, ransomware, spyware, and rootkits. As malware continues to
evolve in complexity and stealth, it poses a persistent threat to both individual users and
enterprise infrastructures. Malware detection is broadly categorized into two approaches:
dynamic analysis and static analysis.

Dynamic malware detection involves executing a suspicious file in a controlled envi-
ronment (e.g., sandbox) to observe its behavior in real time. This method is effective
in uncovering run-time behavior, such as network communications, file modifications, or
system calls [103, 69]. However, dynamic analysis is time-consuming, resource-intensive
and susceptible to evasion by malware that uses sandbox detection or delayed execution
techniques.

In contrast, static malware detection analyzes the structure and content of executable
files without executing them [54]. This includes inspecting binary code, headers, metadata,
imported libraries, and embedded resources. Static analysis is computationally efficient and

safer to apply at scale, making it suitable for real-time scanning and host-based endpoint
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protection.

However, it often struggles to detect obfuscated or polymorphic malware unless combined
with robust feature engineering and learning mechanisms. Researchers also focus on the
static analysis of Portable Executable Files (PE) which are the standard binary format
used by Windows operating systems. PE files offer a rich source of structural and semantic
information, including file headers, section tables, import/export functions, and entropy-
based patterns. When extracted effectively, these features provide valuable input for
machine learning models to classify files as benign or malicious [95]. Recent studies have
shown that machine learning models, particularly those trained on large PE datasets, can
achieve high accuracy in malware classification tasks [74, 29, 59]. However, challenges
persist due to the high dimensionality of the extracted features, the imbalance between

benign and malicious samples, and the need for interpretable decision making.

1.1.2 Common Types of Network Attacks

Network attacks represent any malicious activity aimed at violating the confidentiality,
integrity, or availability of computer networks and their resources. A clear understanding of
various types of network attacks is crucial for designing and evaluating intrusion detection
and prevention systems. This section provides an overview of the most prevalent and
impactful categories of network attacks in modern cybersecurity.

Network attacks can be categorized in various ways, such as by intent, technique, affected
OSI layer, or exploited vulnerabilities. In the following, we classify attacks by the most

relevant functional categories for academic research and practical defense.

1. Denial-of-Service Attacks (DoS/DDoS): DoS attacks aim to disrupt network
service availability by overwhelming targets with excessive requests or malicious traffic,
exhausting resources such as bandwidth or CPU [97]. DDoS attacks amplify this effect
by leveraging multiple compromised machines (botnets). Typical techniques include
SYN Flood, UDP Flood, ICMP Flood, HTTP Flood, and amplification attacks (e.g.,
DNS amplification). A famous example is the 2016 Dyn DNS DDoS, which disrupted

major internet services.

2. Scanning and Enumeration Attacks: Attackers gather intelligence through port
scanning, vulnerability scanning, and network mapping. Port scanning identifies
open ports and services (e.g., using nmap), while vulnerability scanning seeks known
weaknesses. Such reconnaissance is often a precursor to further exploitation and is

detectable by intrusion detection systems [7].

3. Spoofing Attacks: Spoofing attacks involve the deliberate falsification or manip-

11
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ulation of identity information in network communications, enabling adversaries to
masquerade as trusted entities. These attacks undermine the integrity and trust of
network protocols, and often serve as precursors to more sophisticated threats such as

man-in-the-middle (MitM), session hijacking, or data theft.

. Man-in-the-Middle (MitM) Attacks: occur when adversaries intercept and po-
tentially alter communication between parties without their knowledge. Techniques
include ARP poisoning, rogue access points, SSL stripping, and session hijacking,

leading to credential theft or unauthorized data manipulation.

. Eavesdropping and Sniffing Attacks: Eavesdropping involves unauthorized in-
terception of network traffic to capture sensitive data. Passive sniffing targets unen-
crypted networks, while active sniffing may leverage ARP poisoning. Tools such as

Wireshark and tcpdump are often misused for this purpose.

. Replay and Session Hijacking Attacks: Replay and session hijacking attacks
target the integrity and confidentiality of communications by exploiting weaknesses in

session management and authentication mechanisms.

. Malware-Based Network Attacks: Malware-based attacks involve the deployment
and propagation of malicious software designed to infiltrate, disrupt, or gain control
over systems and networks [79]. These attacks are highly diverse in technique and
impact, often leveraging network vectors for both initial infection and command-and-

control (C2) communications .

e Worms (e.g., WannaCry): Worms are self-replicating programs that spread au-
tonomously across networks by exploiting software vulnerabilities or weak con-
figurations. The infamous WannaCry worm, for instance, exploited a Windows
SMB vulnerability (EternalBlue) in 2017, infecting hundreds of thousands of
systems globally within hours. Worms typically require no user interaction, can
rapidly consume network bandwidth, and often deliver secondary payloads such

as ransomware or rootkits.

e Trojans: Trojans masquerade as legitimate software or files, tricking users into
installing them. Once executed, trojans can open backdoors, allowing remote
attackers persistent access, or serve as droppers for additional malware. Unlike
worms, trojans do not self-replicate but rely on social engineering or software

bundling for distribution.

e Ransomware: Ransomware encrypts files or entire systems and demands payment

(often in cryptocurrency) for decryption. Modern ransomware campaigns leverage

12
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phishing, exploit kits, or exposed RDP services to gain a foothold, and frequently
exfiltrate sensitive data before encryption (double extortion). Notable examples

include CryptoLocker, WannaCry, and REvil.

Modern malware increasingly uses techniques such as encrypted network traffic (e.g.,
over HTTPS or custom protocols), fileless payloads, and multi-stage infections to evade

detection by traditional antivirus and intrusion detection systems.

8. Phishing, Spear Phishing, and Social Engineering Attacks: These attacks
primarily exploit human vulnerabilities to breach technical defenses, often serving as

the initial stage of broader cyberattacks.

9. SQL Injection and Web-Based Attacks: Web applications are frequent targets for
network-based attacks that exploit vulnerabilities in input validation, authentication,

and session management [42].

10. Advanced Persistent Threats (APT): APTs are sophisticated, multi-stage at-
tacks typically orchestrated by organized groups for long-term, stealthy access and
data exfiltration [22]. These often combine social engineering, malware, and lateral

movement, as seen in campaigns such as Stuxnet and SolarWinds.

11. Supply Chain Attacks: Attackers compromise trusted third-party providers (soft-
ware, hardware, or services) to infiltrate target organizations. Notable example:
SolarWinds breach in 2020.

12. Insider Threats: Insiders (employees, contractors) may intentionally or accidentally
leak sensitive data, disable security controls, or aid external attackers. These attacks

are hard to detect due to legitimate credentials and access.
The network attack landscape is continually evolving, with emerging trends including:
e Encrypted Traffic Attacks: Use of TLS/SSL for malicious command-and-control
(C2) and data exfiltration.
e [0T Attacks: Exploitation of insecure devices for botnets (e.g., Mirai).
e Fileless Attacks: Leveraging legitimate tools (e.g., PowerShell) to avoid detection.
e Cloud-Specific Attacks: Misconfiguration and privilege escalation in cloud envi-

ronments.

A comprehensive, multi-layered defense is essential to counter both traditional and

novel threats. Understanding common types of network attacks is foundational for
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Table 1.1: Summary of Common Network Attack Types

Attack Type Technique Impact Detection
Denial-of- Traffic floods, amplifi- | Service unavail- | Rate  limiting,
Service cation ability filtering
(DoS/DDoS)
Scanning & Enu- | Port/vulnerability Reconnaissance | IDS, anomaly
meration scans detection
Spoofing IP/ARP/DNS falsifi- | Evasion, redirec- | Authentication,
cation tion ARP/DNS
security
Man-in-the- Interception, SSL | Data theft, ma- | Encryption, cer-
Middle (MitM) | stripping nipulation tificate pinning
Sniffing/ Eaves- | Passive/active traffic | Credential leak- | TLS, VPN
dropping capture age
Replay/Session | Packet replay, session | Unauthorized Token /session
Hijacking ID theft access management,
TLS
Malware Propa- | Worms, trojans, ran- | Compromise, Antivirus, sand-
gation somware data loss boxing
Phishing/Social | Deceptive messages, | Credential theft, | User  training,
Engineering psychological tricks initial access email filtering
SQLi/XSS/CSRF| Web input manipula- | Data theft, de- | Input validation,
tion facement WAF
APT Multi-stage, stealthy | Espionage, long- | Behavior analyt-
infiltration term theft ics, EDR
Supply Chain Third-party compro- | Widespread Vendor manage-
mise breach ment, code re-
view
Insider Threat Privileged misuse, | Confidentiality Monitoring,
data exfiltration breach least  privilege,
DLP
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building and evaluating intrusion detection and prevention systems. By addressing
both classic and modern attack vectors, researchers and practitioners can better design
comprehensive, resilient cybersecurity solutions. The summary of common network

attack types show as Table 1.1.

1.1.3 Machine Learning in Cybersecurity

Machine learning (ML) has emerged as a core enabler of intelligent cybersecurity systems
due to its ability to learn complex patterns from data and generalize to previously unseen
threats. In contrast to traditional rule-based or signature-based detection mechanisms
[26, 28, 35, 81], which are based on predefined knowledge, ML-based approaches can adapt
to evolving attack behaviors, making them particularly valuable for protecting against zero-
day attacks and obfuscated malware [6, 40, 114, 56]. In the context of cybersecurity, machine

learning techniques have been successfully applied to a wide range of tasks, including:

e Intrusion detection: Classifying network traffic as benign or malicious based on flow-

level or packet-level features.

e Malware classification: Detecting and categorizing executable files as benign or mali-

cious using static or dynamic features.
e Phishing and spam detection: Identify malicious URLs, emails, or messages.

e Behavioral analysis: Profiling user or system behavior to identify anomalies or insider

threats.
Commonly used machine learning algorithms in these domains include:

e Tree-based models: Decision Trees, Random Forests, XGBoost, Light GBM, and Cat-
Boost are widely used due to their robustness, interpretability, and ability to handle
mixed data types. These models perform well on structured tabular data such as

network flows or PE file attributes.

e Support Vector Machines (SVM): Effective for binary classification problems with

well-separated classes, but less scalable for large datasets.

e K-Nearest Neighbors (KNN): Simple and intuitive but computationally expensive in

high-dimensional spaces.

In recent years, deep learning (DL) models have gained traction for more complex
cybersecurity tasks. Convolutional Neural Networks (CNNs), Recurrent Neural Networks
(RNNs), and Autoencoders have been applied to model patterns in raw byte sequences,

logs, and network flows. For example:
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e CNNs can learn spatial patterns in structured inputs or bytecode (e.g., PE headers)
[74].

e RNNs are suitable for sequential data, such as network traffic over time or system

calls.
Despite their power, ML and DL models in cybersecurity face several critical challenges:

e Imbalance dataset: Benign data often outnumber malicious instances in a large amount,

which can cause classifiers to be biased toward the majority class [53].

e Generalization and Overfitting: Models trained on fixed datasets may not be general-

ized to real-world threats or novel attack types [2, 63].

e Interpretability: Many high-performance models act as black boxes, offering little
insight into why a sample was classified as malicious, limiting the trust and auditability

of the analyst.

e Real-time constraints: In operational environments, models must deliver predictions
with low latency and high throughput, requiring careful trade-offs between complexity
and efficiency [63].

Addressing these challenges requires not only algorithmic innovation, but also principled
data processing, model ensemble design, and performance tuning. In this dissertation, we
investigate multiple machine learning pipelines that span boost models, deep neural net-
works, and hybrid ensembles tailored specifically for intrusion and malware detection tasks.
Particular emphasis is placed on handling imbalanced data, optimizing model performance,

and ensuring deployment feasibility in real-time or resource-constrained environments.

1.1.4 Class Imbalance in Cybersecurity Dataset

Class imbalance is a widespread challenge in cybersecurity datasets, particularly in the
domain of intrusion detection. Most real-world traffic traces and publicly available datasets
exhibit a skewed distribution in which benign samples outnumber malicious ones [34].
Moreover, even within malicious categories, certain attack types such as port scanning
or denial-of-service are vastly overrepresented, while advanced or stealthy attack vectors
appear only sparsely.

This imbalance severely affects the training and performance of machine learning (ML)
models [98, 111]. Standard classifiers tend to optimize for overall accuracy, which can lead
to poor recall of minority (attack) classes, undermining the reliability of threat detection

systems. In extreme cases, models may entirely ignore rare but dangerous attack categories
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to reduce overall classification loss. There are two primary dimensions to the imbalance

problem in cyber threat detection:

e Global imbalance: Refers to the disproportionate ratio between benign and malicious
samples. For example, in the CSE-CIC-IDS2018 dataset, benign traffic often consti-
tutes more than 80-90% of the total records.

e Intraclass imbalance: Occurs within the malicious subset, where attacks such as brute-
force login attempts dominate, while more sophisticated threats such as infiltration,

backdoors, or botnet activities are underrepresented.
Various techniques have been proposed to address class imbalance in ML workflows:

e Data-level methods: These include oversampling the minority class (e.g. random
duplication, SMOTE), undersampling the majority class, or a combination of both,
such as Sinha et al. [99] proposed a conventional oversampling procedure to balance
the dataset. The experiment evaluated the CNN-BiLSTM model based on the NSL-
KDD and UNSW-NB15 datasets with 10-fold cross-validation. It achieves an accuracy
of 99.22% and a detection rate of 98. 88% for the NSL-KDD dataset. However,
the experiment only demonstrates cross-validation and does not include independent
test data after execution. However, naive oversampling can cause overfitting, while

undersampling can discard valuable information.

e Algorithm-level methods: Modifications to loss functions (e.g., weighted loss, focal
loss) or ensemble methods like boosting can mitigate imbalance by assigning a greater
penalty to misclassified minority samples. Liu et al. [68] presented a technique to
balance the dataset for network IDS, namely DSSTE. This method used techniques to
balance the dataset for the minority and majority classes. The result of the experiment
of this approach is achieved by 96.99% and 82.84% for the CSE-CIC-IDS2018 and
NLS-KDD datasets, respectively.

e Hybrid approaches: Integrating data balancing with ensemble techniques or meta-
learning strategies can yield better generalization and robustness. For example, Gupta
et al. [43] presented a solution to balance the dataset. This method integrates
DL and ensemble learning algorithms with data-level techniques based on Random
Oversampling (ROS) and SVM-SMOTE. Before data oversampling, they used DNN
to perform binary classification of benign and attack network traffic flow, followed by
the XGB algorithm. They also distinguish between the majority and minority attack
classes. The dataset is then resampled and the RF algorithm is applied to classify the

various minority attack classes.
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Despite these efforts, many solutions fall short in practical deployment due to lack of
semantic quality control over generated samples, insufficient treatment of rare but critical
classes, or poor integration with feature selection and model tuning. These shortcomings
often lead to high false negative rates and an especially dangerous failure mode in intrusion

detection systems (IDS).

1.1.5 Ensemble Learning in Intrusion Detection

Ensemble learning is a machine learning paradigm in which multiple models referred to as
base learners are strategically combined to achieve better predictive performance compared
to any individual constituent [38]. This approach is particularly advantageous in cyberse-
curity, where attack patterns are diverse, constantly evolving, and often subtle enough to
elude single-model detection systems.

The core intuition behind the ensemble methods is that a group of diverse, moderately
accurate models can collectively produce more robust and accurate predictions, especially
when their errors are not correlated [9]. In threat detection contexts, ensemble learning

contributes to:

e Higher accuracy and stability: Reducing overfitting and variance, particularly in small

or imbalanced datasets.

e Improved generalization: Handling a wider range of attack types and data distribu-

tions.

e Resilience to evasion: Mitigating the weaknesses of individual models by relying on

consensus.
There are several ensemble strategies relevant to intrusion and malware detection:

e Bagging (Bootstrap Aggregating): Techniques like Random Forest build multiple
models on randomly resampled subsets of the data and average their predictions,

reducing variance [72].

e Boosting: Methods such as XGBoost, LightGBM, and CatBoost sequentially train
models in which each learner focuses on the errors of its predecessors. These models
are powerful for structured cybersecurity data and have shown superior performance

in malware and intrusion classification tasks [56].

e Voting ensembles: Combine predictions from heterogeneous models (e.g., a CNN and
a decision tree) using hard (majority vote) or soft (probability averaging) voting to

improve overall robustness [38].
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e Stacking: A more sophisticated strategy where outputs of several base models are
used as features for a meta-learner. This two-layer architecture can capture complex

relationships between models, often leading to state-of-the-art results [91].

In cybersecurity, ensembles are especially beneficial due to the heterogeneity of feature
types and attack vectors. For example, network intrusion detection may rely on time series
or flow-level features, while static malware analysis may use structural metadata or byte-
level patterns. No single-model architecture can effectively cover all these modalities, but

ensemble strategies can integrate their strengths.

1.2 Approaches to Threat Detection

1.2.1 Al-powered Intrusion Detection

The model concept in ML /DL or Al refers to the mathematical processing of the prediction
Y from the input X. The model’s parameters are factors to learn from data to have a mode
that can make a good prediction. The objective function is to maximize or minimize to
find such parameters.

For intrusion detection based on an AI model, each network traffic flow is modeled by a
vector of features f = [ay, ..., a,]. These vectors are analyzed to discover anomalies using
a classification method. Current research in [2, 63] affirms that deep neural networks,
gradient boosting machines (GBM), and gradient boosting are the best methods to predict
intrusion attacks. Thus, we focus on these methods in our research to improve intrusion
detection by deep network traffic analysis.

For boost learning methods, minimizing prediction errors is tactically performed by
introducing a gradient term [40]. Thus, eXtreme Gradient Boosting (XGB) is considered a
typical ML for intrusion detection. XGB uses decision trees as weak learners and combines
their contributions to produce a strong learner. XGB uses an ensemble of K classification
and regression trees, each of which has K ’E|Z € 1..K nodes. The final prediction is the sum

of the prediction scores for each tree:

K
Ui = p(r;) = ka(l’i), Jr €F, (1.1)

k=1
where x; are members of the training set, y; are the corresponding class labels, fj is the
leaf score for the tree k' and F is the set of all K scores for all classification and regression
trees. In XGB, the objective function is created using Taylor’s theorem [18],

n

b ® =3 |mifulp) + 5esf2 )| + %) (12)

i=1
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where m; and c¢; are the inputs. The result of the objective function is a tree that adds
itself to the model.

The GBM is also another typical ML for intrusion detection. It was the first version of
a gradient-boosting ensemble that adopted a forward learning strategy. Trees are created
sequentially, where subsequent trees rely on the outcomes of the preceding trees. Generally,
GBM is accomplished through the iterative construction of a set of functions f°, 1, ..., f,
given a loss function Q(y;, f!). Suppose that function ft has been constructed; we can
optimize our estimates of y; by discovering another function fi+! = f* 4+ ht*+1(x) such that
R*1 diminishes the estimated value of the loss function.

On the other hand, DL is suitable for modeling complex nonlinear relationships by
learning multiple data representations corresponding to different levels of abstraction. A
DNN consists of several layers: input, hidden, and output. These layers are established
for feature extraction and transformation. It is a promising method for detecting network
attacks [39]. In DNN architecture, several activate functions have been proposed and used,

including:
Xy

> (1.3)

Sigmoid = ; Softmaxr =

1
1+4+e 2

Hyperbolic tangent = ReLU = maz{zx,0} (1.4)

1+e—2m

The ReLLU (Rectified Linear Unit) has the advantage of efficiently training large datasets
among these functions [105].

Thus, each MD/DL or Al model has its advantage. The combination of several Al
models allows us not only to improve the quality of intrusion detection but also to prevent
spoofing attacks such as adversarial attacks.

Ensemble learning is a well-known technique for improving performance and reducing
variance by training multiple models and combining their predictions to produce the optimal
outcome. It is also an approach that combines multiple machine learning models into
a more efficient solution than any single algorithm [18]. The ensemble techniques are
fundamental or advanced. The fundamental ensemble methods consist of Max voting,
Averaging, and Weighted Average, in which different algorithms are trained on the data,
and after averaging, more powerful models are produced. Among the advanced techniques

for ensembles, stacking, bagging, boosting, and combining [57].

1.2.2 Al-powered Malware Detection

In malware detection, current approaches focus on combining pattern matching and Al-

powered analysis in PE files [89, 96, 107]. This study focuses on the detection of malware

20



1.2 Approaches to Threat Detection

embedded in PE files, the standard format for Windows executables. Detecting PE malware
is a challenging task due to the complexity of PE structures, the prevalence of evasion
techniques, and the vulnerability of AI models to adversarial attacks, as discussed in the
Introduction.

Currently, LIEF [100] is one of the most common tools used for Al-powered malware
detection [88, 37]. Here, the vector encapsulates various structural and metadata attributes
extracted from the PE file (e.g., headers, sections, imports, and other characteristics).

For Al-powered malware detection, define D as the dataset composed of pairs (v,y),
where v is the representation of a feature vector of a PE file and y € {0, 1} is the associated
label (e.g. 0 for benign, 1 for malware), respectively. Thus, D = (v1,y1), (v2,42), ..., (var, Yar)
with M representing the total number of samples. The problem is to train a generalized
Al model f: R* = 0,1 on the dataset D such that, for any new PE file, its feature
vector v is mapped to a predicted label y = f(v). The goal is to maximize the accuracy of
f while generalizing well beyond the training dataset, thus enabling the reliable detection
of malware in unseen PE files.

To achieve this, various ML techniques can be employed, including supervised learning
algorithms such as decision trees, support vector machines, or neural networks. Addition-
ally, feature set optimization and engineering play a crucial role in improving the model’s
performance by ensuring that the most relevant characteristics of the PE files are utilized
for accurate predictions. Currently, CNN, XGB, CBT, and GBM are typical AI models
used to predict intrusion attacks [40, 28, 56, 110]. Thus, we focus on these methods in our

research to improve malware detection through PE file analysis.

1.2.3 Handling Imbalanced Datasets

The quality of the dataset impacts the performance when ML/DL is applied for intrusion
detection. In general, most well-known datasets for intrusion detection have a much lower
number of attacked flows than benign flows. A class with higher samples is called a
‘majority’ in ML classification issues. Moreover, the inverse, a class with small samples,
is considered a ‘minority class’. Using unbalanced datasets usually has terrible effects on
both the training phase and subsequent prediction [93, 109].

Thus, we should balance datasets in ML to improve the quality of the training dataset.
In imbalanced data handling, under-sampling the majority class is a conventional plan
of operation. Then, oversampling techniques followed by undersampling can be used to
balance the datasets. Some well-known and widely used techniques can be considered
to tackle the imbalance problem, such as the synthetic minority oversampling technique
(SMOTE) and edited closest neighbors (ENN) [71, 93]. Applying these methods can clean
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or reduce the noise for the majority classes and generate more realistic samples for the

minority classes in training datasets.

1.3 Related Work

1.3.1 Deep and Boosting Learning for Intrusion Detection

DL approaches effectively detect network attack associations within raw samples, feature
learning, and classification tasks. Many DL techniques have implemented IDS in the
last few years [50, 77, 33]. DL is used in real-time environments for several studies on
network attack detection. For example, Bontemps et al. [19] propose a collective real-time
anomaly detection model based on neural network learning and feature operation. Their
method involves using typical time series data to train an LSTM RNN;, followed by a live
prediction for each time step. An approach for NIDS based on a hierarchical and dynamic
feature extraction framework (HDFEF) wasproposed by Li et al. [65]. They defined a
network activity as a series of packets using various network traffic flows. The distribution
of the feature representations of several temporally associated network packets is then
dynamically adjusted with an attention mechanism in a hierarchical network model. The
final discriminant vectors are then obtained and utilized for classification after combining
the vectors from the multi-space mapping. The precision of the HDFEF on the CSE-CIC-
IDS2018 dataset is 99.05%.

Alrawashdeh et al. [11] proposed a DL method for anomaly detection using a Restricted
Boltzmann Machine (RBM) and a deep belief network. Their method involved creating
unsupervised feature reduction using a one-hidden-layer RBM and then passing the weights
from this RBM to another RBM to create a deep belief network. With the NSL-KDD
dataset, they were 97.91% accurate. In addition, Jayalaxmi et al. .[51] introduce the IDS
framework known as PIGNUS, which combines an effective feature mapping method with
a cascade model. The PIGNUS combines the cascade forward back propagation neural
network for classification and attack detection with Auto Encoders to choose the best
features. The cascade model creates an accurate categorization using related links from
the input layer to the output layer to identify typical and aberrant behavior patterns.
The experiment result from PIGNUS reaches 99.02% accuracy for the NSL-KDD dataset.
Aldarwbi et al. [8] offer a system that transforms the netowrk traffic flow features into
waves and leverages advanced audio/speech recognition DI-based methods such as LSTM,
Deep Belief Networks (DBN) and CNN to detect intruders. It achieves the accuracy of
84.82% and 99.41% for the NSL-KDD and CIC-IDS2017 datasets, respectively. In other
ways, the authors used the Firefly Optimization (FFO) technique to detect incursion and
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the Probabilistic Neural Network (PNN) to categorize categories based on the NSL-KDD
datasets [85]. The proposed approach achieves an accuracy of 98.99%.

Qazi et al. [87] presented a hybrid IDS framework using a convolutional recurrent neural
network (CRNN) to detect network threats. This method merges an RNN with a CNN in
which various RNN layers follow two convolutional layers. The output is then fed into fully
connected, flattened, and SoftMax layers, which enable the model to detect and classify
traffic. The experiment results on the CSE-CIC-IDS2018 dataset reach 98.90% accuracy.
In addition, Ren et al. [92] employed CNN, and the Attention mechanism mix to construct
a CA Block focused on local spatiotemporal feature extraction, using Equalization Loss v2
(EQL v2) to raise the minority class weight and balance the learning attention on minority
classes. The accuracy of the experiment’s results for the NSL-KDD and UNSW-NB15
datasets is 99.77% and 89.39%, respectively.

Moreover, Ghanbarzadeh et al. [36] proposed a method that uses the Multiobjective
Quantum-inspired Binary Horse Herd Optimization Algorithm (MQBHOA) for IDS. This
technique implements the Horse Herd Optimization Algorithm (HOA) metaheuristic opti-
mization algorithm, a robust algorithm inspired by nature. The method achieved 99.0%
and 99.78% of the accuracy of the NSL-KDD and CSE-CIC-IDS2018 datasets, respectively.
In another method, Al et al. [7] offers a new classification-based NIDS on network flow
traffic that generates huge amounts of data. The suggested system combines a hybrid
DL (HDL) network composed of a CNN and an LSTM for a better IDS. In addition,
data imbalance processing consisting of the SMOTE and Tomek-Links sampling methods
termed STL was utilized to mitigate the effects of data imbalance on system performance.
The accuracy of the proposed method in binary classification was 99.17% and 99.83% in
multiclass classification.

Since the XGB outperforms other well-known algorithms in a single ML, its popularity
is rising .[4]. Verma et al. .[104] recently suggested a technique for IDS that combined the
XGB algorithm with K-Means clustering. For the NSL-KDD dataset, the experiment result
has an accuracy of 81.2%, 82.38%, and 84.25%, and for the ANN, SVM, and XGB models,
respectively. Furthermore, Devan et al. .[27] propose a strategy for enhancing NIDS that
blends DNN with XGB. This approach uses the XGB technique for feature selection, and
the experiment results are 97.60% accurate. Numerous dual-ensemble techniques involving
fine-tuned CBT algorithms, such as XGB, CBT, Light GBM, and GBM, are fully assessed
utilizing publicly available data sets, such as UNSW-NB15 and NSL-KDD. Louk et al. [72]
presented a dual ensemble model by blending two current ensemble methods: bagging and
CBT. The results of the experiment show that the presented technique achieves 94.66%

accuracy.
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Golchha et al. [38] present an attack detection framework for IToT utilizing the voting-
based ensemble learning method. This work includes an ensemble of current and classical
ML approaches, including a histogram gradient booster, CBT, random forest (RF), and a
hard-voting classifier. The result of the experiment reaches 99. 85%, 97. 90%, and 98. 83%
precision for CBT, HGB, and RF, respectively. Moreover, Nazir et al. [82] suggested a
wrapper-based feature selection approach called ‘Tabu Search - Random Forest (TS-RF).’
The Tabu search is used as a search technique, whereas the RF is used as a learning process
for IDS. The suggested model achieved an accuracy of 83.12% for the UNSW-NB15 dataset.

In another approach, Hammad et al. [47] present a method to categorize network attacks
called Multinomial Mixture Modeling with Median Absolute Deviation and Random Forest
Algorithm (MMM-RF). This approach uses t-SNE to minimize data dimension, Correlation
Feature Selection (CFS) to analyze the most important factors affecting network traffic, and
SMOTE combined with Random Under-Sampling to control imbalance on the CSE-CIC-
IDS2018 dataset. It has a 99.98% accuracy rate.

1.3.2 Deep and Boosting Learning for Malware Detection

Neural network (NN) approaches effectively detect malware and network attack associations
within raw samples, feature learning, and classification tasks. Numerous NN techniques
have been implemented in the last few years [50, 77, 33]. Some studies on attack detection
employ DL in a real-time environment. For example, Divakarla et al. [29] presented a simple
DNN-based Windows malware detection system that achieves a test accuracy of 96.76%.
Moreover, the authors also performed an improved offensive generative model based on
GAN to make the current DNN-based system accurate at 97.42%. This work demonstrates
how the combination of DNN and rigorous static analysis aids in the development of a
malware detection system, allowing it to learn complex features with a larger number of
layers and more data.

Liu et al. [70] propose a generic ML-based visualization method for malware detection
named Visual-AT. In addition, it uses the AT technique to detect and analyze malware
that was initially difficult to identify, as well as potential variants, using transformed image
data and two ML models. Visual-AT achieves up to 97.73% accuracy for the EMBER 2018.
In [74], Marais et al. propose a malware detection model that transforms binary files into
grayscale images, achieving 88% accuracy and 85% precision for EMBER 2018 in detecting
packed or encrypted samples.

Moreover,Rigakia et al. [94] also came up with a way to train different kinds of surrogate
model and sampling strategies to steal standalone ML models and four antivirus systems.

This method presented a dual FFNN architecture, achieving the precision 98.02% for EM-
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BER 2018. In [59], Lad et al. propose a model that focuses on the efficient extraction and
classification of feature of PE files. They perform feature extraction, data standardization,
and data cleaning techniques to address imbalances and impurities in the dataset. Using
the EMBER dataset (2017 and 2018), they extracted 2,381 features and trained a deep
learning (DL) model with dense and dropout layers. Their model achieved 97.53% and
94.09% accuracy, with 98.85% precision.

XGB often achieves faster training and inference times compared to other commonly
used ML algorithms, such as Random Forest or SVM, when applied as standalone models
[84]. Recently, Devan et al. [27] presented a method that uses the XGB technique for
feature selection followed by a DNN and gets 97.60% accuracy. In addition, Mimura et
al. [76] proposed a method for malware detection on PE files using printable characters
using two language models for feature extraction and ML. The author uses the latest FFRI
dataset between 2019 and 2021 to evaluate the method. According to the results, the
XGB model achieves an accuracy of 99.0%, and the most suitable mix was Doc2Vec and
multilayer perceptron, which achieved an F1 score of 98.10%. Each run time showed an
almost linear increase with increasing dataset size.

Moreover, Alani et al. [76] introduced a lightweight obfuscated malware detector based
on explainable ML techniques. The authors used the feature selection method (RFE) to
reduce the number of features while effectively maintaining high accuracy. This method
improved system efficiency when evaluated using the MalMem2022 dataset and achieved a
remarkable accuracy of more than 99. 8%.

Despite the fact that many proposed ML/DL techniques have improved the development
of IDS, they fail to achieve excellent performance, which consists of a low false alarm rate
and a high detection rate. One of the explanations why the majority of these works disregard

the imbalanced data in IDS datasets.

1.3.3 Data Augmentation

Researchers recently proposed several methods to improve the quality of datasets for train-
ing ML or DL models. For example, to balance the dataset in NIDS for industrial IoT,
Zhang et al. [112] propose PWG-IDS based on WGAN with a gradient penalty to generate
samples from minority class. The proposed reduces the number of iterations and generates
more realistic sample data than GAN, using Light GBM for the classification algorithm.
The experimental findings on the NSL-KDD and CSE-CIC-IDS2018 datasets demonstrate
an accuracy of 99% and 96%, respectively.

Sinha et al. [99] proposed a conventional oversampling procedure to balance the dataset.
The experiment evaluated the CNN-BiLLSTM model based on the NSL-KDD dataset achiev-
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Table 1.2: Summary of Related Works based Intrusion Detection

Method Venue Approach Dataset Acc(%)
RF+ Combination of K-Means and ENN to NSL-KDD,
IEEE Access 82.84,
miniVG- balance dataset then RF+ miniVGGNet CIC-
2020 96.99
GNet [68] to detect intrusions. IDS2018
WGAN+ Applying WGAN-GP for data generation  NSL-KDD,
Computer 99.00,
Light GBM on minority class samples and using CIC-
Science 2021 96.00
[112] Light GBM for the classification. IDS2018
Use CFS to analyze network traffic,
MMM-RF Computer &  T-SNE to minimize data dimension, and CIC- 99.08
[47] Security 2022  SMOTE to imbalance the IDS2018 '
CSE-CIC-IDS2018 dataset.
Computers and Transforms the traffic flow features into 10
CNN, DBNs, Electrical waves and utilizes advanced audio/speech [DS2017 99.21,
LSTM (8] Engineering  recognition deep-learning-based ’ 84.82
NSL-KDD
2022 techniques to detect intruders.
Digital Com- UNSW.NB15,
Used SMOTE to balance abnormal 99.21,
CNN+LSTM  munications CIC-
traffic, CNN to extract deep features, 99.32,
[101] and Networks IDS2017,
then CNN-LSTM to detect intrusions. 98.45
2023 NSL-KDD
Alexandria
FFO+PNN ' ' Used the FFO technique to extract
Engineering NSL-KDD 98.99
[85] features and PNN to classify categories.
Journal 2023
Used CNN and the Attention mechanism UNSW.NB15,
mingle to form a CA Block focusing on NSL-KDD,  89.39,
Computer
CNN+EQL _ local spatiotemporal feature extraction CIC- 99.77,
Communica-
[92] and EQL v2 to increase the minority IDS2017, 99.88,
tions 2023
class weight and balance the learning CIC- 99.58
attention on minority classes. DDoS2019
Use Auto Encoders to select optimal
Computer &  features and Cascade Forward Back
PIGNUS [51] NSL-KDD 99.02

Security 2023

Propagation Neural Network for

classification and attack detection.
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ing an accuracy of 99.22% and a detection rate of 98.88% for the NSL-KDD dataset. How-
ever, the experiment only demonstrates cross-validation and does not include independent
test data after execution. In another approach, Gupta et al. [43] presented a solution to
balance the dataset. This method integrates DL and ensemble learning algorithms with
data-level techniques based on Random Oversampling (ROS) and SVM-SMOTE. Before
data oversampling, they used DNN to execute binary classification of benign and attack
network traffic flow, followed by the XGB algorithm. They also distinguish between the
majority and minority attack classes. Then the dataset is resampled, and the RF algorithm
is applied to classify the various minority attack classes.

In addition, Liu et al. [68] proposed a method to balance the dataset for network
IDS, namely DSSTE, to tackle the class imbalance issue. Authors affirm that the DSSTE
improves the performance of intrusion detection with an experiment result of accuracy:
82.84% on the NLS-KDD dataset and 96.99% on CSE-CIC-IDS2018 compared with other
methods. Some studies concentrate on splitting the training and testing data to enhance
detection quality. In another example, Ullah et al. [101] proposed an IDS using transformer-
based transfer learning for Imbalanced Network Traffic (IDS-INT). It uses SMOTE to
balance abnormal traffic and detect minority attacks, uses CNN to extract features, and
the CNN-LSTM model to detect different types of attacks with an accuracy of 99.21%
for the UNSW-NB15 dataset. In addition, Liu et al. [68] presented a technique to
balance the dataset for network IDS, namely DSSTE. This method used techniques to
balance the dataset for the minority and majority classes. The experiment result of this
approach achieves 96.99% and 82.84% for the CSE-CIC-IDS2018 and NLS-KDD datasets,
respectively. Research concentrates on separating the training and testing datasets to boost
detection quality; for instance, Ullah et al. [101] proposed an IDS employing transformer-
based transfer learning for Imbalanced Network Traffic (IDS-INT). It employs SMOTE to
balance unusual traffic and detect minority attacks, uses CNN to extract features, and
the CNN-LSTM model to detect attacks with an accuracy of 99.21% on the UNSW-NB15
dataset.

Table 1.2 and Table 1.3 presents a comparative summary of state-of-the-art (SOTA)
approaches, evaluated in terms of AI methodologies, approach, datasets used, and reported
accuracy and precision. The analysis reveals that despite recent advancements, the quality
of training datasets remains a limiting factor in achieving consistently high detection rates
for intrusion detection and malware detection. Moreover, both false negative and false
positive rates remain non-negligible across many approaches. These observations underscore
two critical challenges in Al-powered IDS: improving the quality and representativeness of

training datasets, and enhancing the performance and reliability of AI models in practical
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deployment scenarios.
To address these challenges, this dissertation proposes a unified framework that integrates
data-centric enhancement techniques, robust ensemble learning strategies, and scalable real-

time deployment architectures, as elaborated in the following chapters.

1.4 Dataset Collection

Currently, in intrusion detection, there are several public datasets, such as DARPA (Lincoln
Laboratory 1998-99), CAIDA (Center of Applied Internet Data Analysis, 2002-2016), ADFA
(University of New South Wales, 2013), and NSL-KDD, CSE-CIC-IDS2017, and CSE-
CIC-IDS2018 (Canadian Institute for Cyber Security). We use the following dataset for

experiments to evaluate our methods:

e CSE-CIC-IDS2018 dataset is a large-scale modern intrusion detection dataset devel-
oped by the Canadian Institute of Cybersecurity. It contains realistic network traffic
data with a wide range of both benign and malicious activities, making it widely used

to evaluate intrusion detection methods.

e NSL-KDD dataset is an improved version of the original KDD’99 dataset, providing
balanced samples of normal and attack traffic. It is commonly adopted as a standard
benchmark in intrusion detection research, supporting direct comparison with related

work.

e EMBER2017 dataset is a widely used benchmark dataset for Windows malware de-
tection, containing labeled samples of malware and benign files collected in 2017 and
earlier. It includes both labeled and unlabeled samples to facilitate various evaluation

scenarios.

e EMBER2018 dataset, similar to EMBER2017, comprises labeled and unlabeled Win-
dows binaries collected in 2018. It serves as a large-scale representative data set for

training and testing malware detection models.

e BODMAS dataset is a recent dataset for malware detection, containing tens of thou-
sands of labeled malware and benign samples in numerous malware families. Although
comprehensive, it does not include benign binaries and lacks standardized feature

definitions, presenting certain reproducibility limitations.

28



1.4 Dataset Collection

Table 1.3: Summary of Related Works based Malware Detection

Method Venue Approach Dataset  Acc(%)
The method in this study converts binary
Distributed ) .
files into grayscale images to detect
CNN Computing and ) EMBER
malware. The model also integrates an 94.00
[74] Artificial Intelligence . . _ . o 2018
9091 attention mechanism to identify suspicious
parts within the file.
This method builds an improved offensive
DNN Procedia Computer ) EMBER
) generative model based on GANs to 97.42
[29] Science 2022 2018
strengthen the current DNN-based system.
International
This method employs feature extraction,
Journal of Computer o _ EMBER
CNN data standardization, and data cleaning 97.53,
Network and ‘ ‘ 2017 &
[59] techniques to address imbalances and 94.09
Information Security 2018
impurities within the dataset.
2022
This technique finds patterns in how
EII- instructions relate to each other and turns
Computers &
MBS this information into vector BODMAS  99.29
Security 2022
[48] representations to classify malware
families.
The technique in this study utilizes a
XGB- model combining supervised and
CATB- Computer, Material —unsupervised learning to improve malware =~ EMBER 06,77
EXT & Continua 2023 detection. Specifically, k-means clusters 2018 '
[80] the data before a set of ML algorithms
classifies it.
\D This approach combines CNN-based
Computers & image embeddings and adversarial domain
ADA ‘ ‘ . . BODMAS  99.29
17 Security 2024 adaptation (using GANSs) to classify
malware.
FCG- Journal of Network  This method uses function call graphs and
MFD and Computer node2vec along with ideas from NLP to BODMAS  99.28
[45] Applications 2025  help classify malware families.
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1.5 Evaluation Metrics

We use standard metrics computed from the confusion matrix to evaluate the network
attacks detection method, such as accuracy (noted as Acc), Precision (Prec), Sensitivity
(Sens, or Recall/True Positive Rate), False Alarm Rate (FAR, or False Positive Rate),
Recall (Rec), F1 score (F'1), etc. The ML models built in this paper are all multilabel
classification models [30]. Therefore, the metrics to evaluate model performance need to
be made based on the overall assessment of all the n results of predicted labels g; and real

labels y;, where i € [1...n]. The following overall formulas compute these metrics:

n n
1 i N Yi 1 i N Yi
Acc = — Z v yf| Prec = — Z lvi 0 il
n < |yi Uil n— |y

Z lyi O i Z 2|yzﬂyz
|9l |yil + [9i]
To measure the overall performance of intrusion detection, we also use the false positive

rate (FPR) and false negative rate (FNR), computed by the following formulas:

False_ I on_IN
FPR— alse_Intrusion_Number

Total_Number_of_Benigns

False_Benign_N
FNR— alse_Benign_Number

Total_Number_of_Intrusions
To evaluate the efficacy of multiclass classification, we also use the Receiver Operating
Characteristic Curve Area (AUC) [60]. It is worth noting that with numerous intrusion
classes, the One-vs-Rest (OvR) strategy is more suitable than One-vs-One to be used to
calculate the AUC. OvR can also handle class imbalances since it treats each class inde-
pendently and does not require balanced class distributions. Thus, we compute the AUC
for each class individually against the rest of the classes and then average the individual

AUC scores to obtain the multiclass AUC.

1 n
AUC = ~ Z AUC;

=1

1.6 Research Gaps and Approach Direction

Despite growing interest in Al-powered security solutions, several unresolved challenges
hinder the development of scalable, interpretable, and resilient threat detection systems.
Based on an in-depth review of current research and practical system evaluations, this

dissertation identifies and addresses three key research gaps:
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e Research Gap 1: Most real-world intrusion detection datasets suffer from severe class
imbalance, where minority attack classes are underrepresented and difficult to learn.
Conventional oversampling techniques, such as SMOTE, focus on increasing the sample
volume without guaranteeing semantic quality, often introducing noise. Addition-
ally, network flow/PE files exhibit high-dimensional feature spaces with redundant or

weakly relevant attributes, further complicating model training and inference efficiency.

Approach Direction (Chapter 2): To address these limitations, we propose augmenta-
tion dataset methods that enhances both the quantity and quality of training dataset,

optimizing feature space. Our method includes:

— Using WGAN to generate new and realistic for minority-class samples;

— KMeans-based filtering to select semantically meaningful samples from training

datasets;

— SHAP-based feature selection to reduce dimensionality while preserving important

features;

— Evaluation of ensemble-based Al models on optimized data to validate gains in

accuracy, F'l-score, recall.

The methods are validated on benchmark datasets such as CSE-CIC-IDS2018, confirm-

ing its effectiveness in improving detection performance under unbalanced datasets.

e Research Gap 2: Although recent studies have proposed various approaches to opti-
mize machine learning models for intrusion detection, model optimization remains a
persistent challenge in machine learning applications. This can be achieved through
different methods, such as parameter tuning or combining multiple models to minimize

misclassification and improve the predictive performance of the models.

Approach Direction (Chapter 3): We design a mutual deep+boosting ensemble in-
ference pipeline that leverages the complementary strengths of diverse models to
enhance overall performance and reduce vulnerability to model poisoning. This chapter

contributes:
— Development of base models (CNN, XGBoost, Light GBM, CatBoost) trained on
augmentation training set/ optimized feature sets;

— Mutual of predictions via soft voting and stacking to improve the perfomance and

reduce poisoning model attacks.

— Extensive empirical evaluation across malware detection and intrusion classifica-

tion tasks, measuring both performance metrics and inference consistency; This
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ensemble structure improves classification robustness and offers a modular foun-

dation for deployment in dynamic cyber environments.

e Research Gap 3: Despite recent advances, most IDS models remain unsuitable for high-
throughput environments due to computational bottlenecks, static detection logic, and
lack of adaptive flow control. Traditional detection frameworks are unable to meet

real-time latency constraints or scale to modern enterprise or ISP-level networks.

Approach Direction (Chapter /). We propose a scalable and low-latency intrusion
prevention system called NetIPS, built upon parallelized deep and boosting models

integrated with flow-sensing optimization and sandbox analysis. Key features include:

— An Al-powered detection core using parallel ensemble learning;

— A flow-sensing strategy that selectively triggers inference based on dynamic traffic

characteristics;
— A hunting malware method that detect malware files transfer between network.

— A user-space deployment model that minimizes kernel overhead and supports real-

time decision-making;

— Evaluation on emulated network environments to assess performance under strict

latency constraints.

This architecture closes the gap between academic detection models and operational

requirements, supporting a proactive and scalable threat response.

Collectively, these three research directions form a cohesive strategy to advance the
state of Al-powered cyber threat detection. By addressing dataset, model, and system-
level limitations, the dissertation contributes to the design of next-generation detection
frameworks that are not only accurate and robust, but also explainable and deployable in

real-world scenarios.

1.7 Summary

This chapter has established the foundational context for this dissertation by highlighting
the motivation to develop intelligent and resilient Al-based cyber threat detection sys-
tems. It began by reviewing the increasing scale and complexity of modern attacks and
underscored the shortcomings of traditional intrusion and malware detection approaches,
especially their inability to cope with class imbalance, high-dimensional feature spaces, lack

of interpretability, and challenges in real-time deployment.
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In addition, we also introduced fundamental concepts in intrusion detection, malware
classification, feature extraction, and the application of machine learning and deep learning
in cybersecurity. Through an extensive survey of recent literature, it highlighted both the
progress and persistent gaps in current research, particularly regarding data imbalance, the
limitations of single-model approaches, and the absence of scalable real-time Al solutions.

By synthesizing these issues, Chapter 1 identified the key research challenges and framed
them as a roadmap for future contributions to the dissertation. Specifically, it defined three
interrelated research directions: (i) addressing the challenge of learning from unbalanced
and redundant datasets (Chapter 2); (ii) advancing machine leaning model robustness and
detection accuracy via mutual ensemble learning (Chapter 3); and (iii) bridging the gap
to practical deployment by designing scalable, real-time intrusion prevention architectures
(Chapter 4).

In summary, this chapter has identified the key research challenges and objectives in
intrusion and malware detection and outlined the main scientific contributions and research
roadmap of the dissertation. The mapping between these contributions and the correspond-
ing technical chapters has also been presented, providing a clear structure for the remainder
of this work. The next chapter will focus on advanced balancing dataset techniques,
addressing the challenges of class imbalance and feature redundancy through intelligent
augmentation dataset, adversarial sample generation, and feature selection methods that

lay the groundwork for subsequent model development and evaluation.
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Chapter 2

Enhancing Al-powered Intrusion Detection
with Data Augmentation and Feature
Optimization

This chapter focuses on a key challenge for Al-powered intrusion detection systems: the
imbalance present in machine learning datasets and the difficulty in handling a large number
of features simultaneously. This chapter introduces a novel approach to improving the
quality of the dataset for machine learning, starting with advanced GAN-based techniques
to increase the number of samples for the minority class and selecting the best represen-
tative samples for the majority class. In addition, a SHAP-based feature optimization
method is proposed to identify the most important features for training machine learning
models. However, in the evaluation section, this chapter primarily assesses the quality of
the augmented data, while comprehensive comparisons will be conducted in subsequent
chapters. These enhancements not only aim to “clean” and enrich the training dataset but
also lay a solid foundation for the following chapters, where machine learning and ensemble

models will fully realize their potential on this optimized data platform.

2.1 Problem Statement

In the domain of Al-based cybersecurity analytics, the performance and reliability of
detection systems are highly dependent on the quality and structure of the training dataset.
Two major challenges arise consistently across intrusion detection and malware classification
tasks: (1) severe class imbalance in security datasets and (2) the presence of redundant or
non-informative features in high-dimensional representations.

First, currently, many datasets are used in machine learning and deep learning training,
such as KDD99, DARPA, CAIDA, ADFA, CSE-CIC-IDS2018, etc. [58]. However, the
datasets still have limitations in terms of data quality, such as the difference in the number
of classes, duplication, etc. [2]. Therefore, handling the imbalanced dataset is a challenge
that should be addressed in designing the intrusion detection system using machine learn-
ing/deep learning. In particular, most public datasets in this domain, such as CSE-CIC-
IDS2018 [32] for network traffic and EMBER2018 [13] for malware classification, suffer from
highly imbalanced label distributions. Minority attack types such as SQL injection, U2R, or
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heartbleed often account for less than 0. 1% of the total instances. Traditional oversampling
methods, including SMOTE [23] or ADASYN, often fail to capture the intrinsic structure of
minority samples and risk introducing synthetic noise that degrades classifier performance.
As a result, trained models are prone to high false-negative rates, especially when evaluated
on rare or adversarial samples.

Second, a frequent challenge in Al-powered malware detection is the time required to
learn the features of the program when the number or size of the features is large, or the
number of programs is enormous [53]. Although fewer features may speed up learning,
the detection accuracy is likely to decrease [46]. However, selecting a mix of well-chosen
characteristics makes it possible to achieve reasonable accuracy, a quick learning curve, and
small datasets, although this approach is more complex. The feature spaces extracted from
raw binary files tend to be high-dimensional and noisy. For example, EMBER2018 contains
more than 2,300 static features, many of which are correlated or irrelevant to malware
behavior. Feeding such unrefined data into learning models not only increases the risk of
overfitting, but also inflates training time and hinders real-time inference. Furthermore,
the lack of explainability in deep or ensemble models has become a bottleneck for practical
deployment in security-critical environments.

To address these limitations, this dissertation introduces two complementary

contributions:

e We propose augmentation dataset methods that integrates clustering-based compres-
sion for majority classes and sample generation for minority classes. The augmentation
dataset process is adaptive to feature type and class distribution, with the objective

of producing a balanced and diverse training set while maintaining data fidelity.

e We also develop a SHAP-based feature pruning technique termed the Optimized
Feature Set (OFS), which employs model-agnostic feature importance to reduce di-
mensionality while preserving classifier performance. This method enhances model
interpretability and reduces training/inference overhead across multiple downstream

detection models.

These contributions serve as the foundational input processing components for the
detection systems presented in later chapters. They are experimentally validated in this
chapter using diverse datasets and classifiers and have been shown to significantly improve

the effectiveness and efficiency of Al-based intrusion and malware detection frameworks.
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2.2 Approach Direction

To address the two major challenges of class imbalance and feature redundancy in intrusion
detection datasets, we introduce augmentation dataset methods aimed at enhancing the
learning capacity of AI models in practical cybersecurity contexts. The proposed approach
is designed to simultaneously address the problem of insufficient dataset in minority classes,
select high-quality samples from majority classes, and identify valuable features in datasets
with large numbers of features, issues that are commonly encountered in real-world datasets.

We begin by formally defining the training set RT', partitioned into RT},,; (the n samples
of the majority class) and RT},;, (the m samples of the minority class), where the class
distributions are typically highly imbalanced. To improve data quality and class balance,
we first apply K-Means clustering to compress redundant samples in the majority class, as

shown in the following equation:

Smaj = Z Compress(RTmaqj) (2.1)
i=1

We generate the minority class using the oversampling technique, then verify and remove
noise (Samplenpise) from the new class samples to increase the number of samples of

minority classes by the following formula:

m
Snin = Z Generate(RT min) \ Samplenoise (2.2)
i=1

Finally, we obtain the augmented training set as AT'S with the same number as 7 of every

class label by the following formula:
ATS = Smaj + Smin (23)

In particular, to further improve sample quality, we incorporate a KMeans-based filter-
ing mechanism that clusters most samples and selectively retains those that lie near the
decision boundary, which are more likely to contribute to improved classifier performance.
Moreover, we propose a novel augmentation dataset strategy that is both adversarially
informed and semantically guided. Unlike conventional oversampling techniques such as
SMOTE, which often produce generic and potentially noisy synthetic data, our method
uses Wasserstein Generative Adversarial Networks (WGAN) [14] to generate more realistic
and context-sensitive attack samples. These GAN-based augmentation methods learn from
the underlying structure of minority class instances to synthesize high-fidelity samples that
reflect genuine threat behavior patterns. This ensures that the training set is enriched
not just quantitatively but also qualitatively with examples from minority classes that are

diverse and informative.
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On the other hand, we address the issue of feature redundancy and computational
inefficiency through feature engineering and SHAP-based feature selection. Given the high
dimensionality of network flow data, many features may be irrelevant or even misleading for
model learning. By computing SHAP (SHapley Additive exPlanations) [73] values across
multiple models, we identify the most influential features that consistently contribute to
accurate predictions. This results in a reduced feature set that maintains semantic richness
while lowering model complexity and inference latency. Given an ML model m; to predict
the output y of a data sample x. The Shapley value qﬁ;i) for the j-th feature in the data
sample x is calculated by determining the difference between the model prediction with
feature f; included and its prediction without it by Equation 2.4:

SN — |S] — 1)!
> S N|! = (mi(zsugzy) — mi(zs)) (2.4)

o) =
SC{1,2,...N}\{j}

where N is the number of features; S is a subset of the set of features not containing the

j-th feature; xg is the data sample = containing only the features in set S; xgu(;y is the

data sample x containing the j-th feature; m;(zg) is the prediction value of the model when

considering only the features in set S; m;(rgyy;}) is the prediction value of the model when
including the j-th feature.

After computing the SHAP value for each data sample, Equation 2.5 is used to determine

the importance value of feature j over the entire dataset as follows:

e
1 :gz|¢§)| (2.5)
=1

where n denotes the number of data samples.

We use k ML models, mq, ma, ms,...my, and apply the formula in Equation 2.5 to
calculate the importance score [ jk for each feature j as determined by model my, where k
ranges from 1 to k. We then identify all features that satisfy the condition I Jk > 7, with 7
being a predefined threshold. Next, we select the features chosen by the individual model.
These features are considered essential for training the ML models. Finally, we reconstruct
the dataset using only the important features. This method creates a new dataset with a
reduced number of features, and we use it to train and test the ML models.

The enhanced datasets both augmented and dimensionally reduced are used to train
a variety of Al models, including deep neural networks and ensemble-based classifiers.
These models are evaluated under multiple performance metrics, such as accuracy, precision,
recall, and F1 score, with a specific focus on improvements in minority class detection. The
results demonstrate that the proposed approach not only mitigates the impact of class

imbalance but also enhances the generalization and stability of the model.
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Algorithm 2.1 AugDS: Build the Augmented Dataset

Input: F' - Raw Dataset, represented by a list of feature vectors; K - scaling factor
Output: T - Augmented Dataset;

1:
2:

@

10:
11:
12:
13:

14:

15:
16:
17:
18:
19:

L < ComputeLabels(F) > Get all labels of dataset F
F < Normalize(F) > normalizing all feature vectors
ES = EditedNearest Neighbours(RT,|L|) > determining the easy sets ES by finding
L nearest neighbours samples
DS = RT \ ES > difficult set DS is the rest of RT
Majors, Minors < ComputeMajMin(DS5)
Smaj < 0, Spin 0
for each M € Majors do > Compression Step

C' « Clustering(M,|L]) > computing the centroids C' of |L| clusters by using
KMeans algorithm

M <« Compress(M,C,T) > compressing majority samples using centroids C' of L
clusters

Smaj < Smaj U M
end for
for each M € Minors do > Zooming Step

for each m € range(K, K + 22%¢) do > Zooming Step, Ni,,,, is number sample
in Spin- -

M <« Zoom(m) > zoom range is [1 — =, 1 + ] on both continuous and
categorical features.
Smin < Smin U M

end for
end for
T = ESUSpne UShin > synthese of new dataset T’

return (7')

2.3 Training Dataset Augmentation

2.3.1 Difficulty-Aware-based Data Augmentation

With vast datasets about network traffic, the number of network attacks is typically

extremely low, resulting in a significant disparity between the labeled dataset about cyberat-

tack types and the benign network traffic. Insufficient network attack samples significantly

hinder the development of predictive models. In addition, the amount of benign network

traffic is excessive. It makes the model too difficult to predict, leading to a high rate of

false positives.

To improve the performance of ML models, we must minimize the amount of benign
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2.3  Training Dataset Augmentation

network traffic and increase the number of network attack patterns used in the training
phase. It helps the ML model improve accuracy and avoid overlearning about a specific
label. Consequently, we propose a method based on the concept of the DSSTE algorithm
proposed by [68] to augment the training dataset. Our algorithm is named AugDS and is
shown in Algorithm 2.1.

In particular, the algorithm is specifically designed to address two core challenges com-
monly found in network intrusion datasets: severe class imbalance with an overwhelming
number of benign samples compared to rare attack instances and the presence of redundant
data in the majority class. The algorithm proceeds in several main phases, employing
a partitioning strategy based on sample difficulty, and subsequently applying tailored
compression or augmentation techniques for each group.

Initially, the entire raw dataset was normalized to ensure feature compatibility and
facilitate subsequent operations such as clustering and distance calculations. The algorithm
then uses the Edited Nearest Neighbors (ENN) method to partition the dataset into two
subsets: the ’easy set’, which contains samples whose labels are consistent with those of
their nearest neighbors (and are thus easy for machine learning models to classify), and
the ’difficult set’, which consists of samples lying close to class boundaries or frequently
misclassified by conventional learners.

Within the difficult set, Algorithm 2.1 further distinguishes between majority and mi-
nority classes based on their sample counts. For the majority classes, a data compression
procedure is applied. This involves using the KMeans clustering algorithm to group similar
samples and represent each group by its centroid. In this way, redundant benign samples
are reduced to a manageable, representative subset, which helps mitigate overfitting and
excessive bias toward the majority class.

In contrast, for minority classes, the algorithm adopts a “zooming” strategy. Here,
new synthetic samples are generated for each original minority-class sample by introducing
controlled perturbations to their feature values within a specified range, determined by the
scaling factor K. This ensures that the minority classes are enriched with realistic and di-
verse examples, enhancing the model’s ability to recognize rare or emerging attack patterns.
Importantly, this augmentation is designed to maintain the original data distribution and
avoid the introduction of artificial noise.

Finally, Algorithm 2.1 synthesizes the augmented dataset by combining the easy set re-
tained in its original form to preserve representative characteristics of all classes, compressed
majority samples and zoomed minority samples. The resulting training dataset is therefore
more balanced, rich in information, and tailored to support robust machine learning models

for intrusion detection. By focusing on hard-to-classify regions and adaptively enhancing
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Figure 2.1: Architecture of AWGAN-based Data Augmentation

Majority classes

class balance, AugDS substantially improves detection performance, especially for rare but
critical attack types, while also reducing the risk of overfitting on the dominant benign

traffic.

2.3.2 AWGAN-based Data Augmentation

In another approach, to solve the issue of the unbalanced dataset in IDS, our augmented
WGAN method, AWGAN, generates realistic samples for minority classes using WGAN.
In the meantime, the majority classes in a large number of samples, such as benign
flows, can occasionally hinder the performance of ML models. Therefore, it is essential
to maintain significant samples in the majority classes. We also use the K-Means algorithm
in conjunction with WGAN to eradicate ineffective samples. Consequently, the AWGAN
is depicted in Figure 2.1 and is described formally in Algorithm 2.2. In this algorithm, to
augment the training set, we perform the following steps:

Step 1 - Dataset Reprocessing: carry out dataset normalizing; eliminate noise and
duplicated raw data on the dataset; and split it into the training and testing sets, preset
by a ratio of 7:3, respectively. We use 7 as a constant to determine the maximum samples
of the label class in the training set. The testing set is used for the evaluation in the DL
models of our project.

Step 2 - Finding Majority and Minority Classes: The training set is separated into the
majority class and minority class from the initial/original train dataset. We compressed
the majority class and utilized the oversampling approach to create data for the minority
class. Consequently, the total number of classes in the training set is equal.

Step 3 - Compressing Majority Classes: we reduce the number of the majority class

by proposing a method inspired by the idea of the DSSTE [68] algorithm to augment the
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2.3  Training Dataset Augmentation

Algorithm 2.2 AWGAN: Create the Training & Testing Sets by Augmented WGAN
Input: F' - Raw Dataset, represented by a list of feature vectors.

r - ratio between training and testing sets; default is 7:3.
7 - maximum samples in a label.
Output: T - Training Set; V' - Testing Set.
1: L < GetLabels(F) > Get all labels of dataset F.
2: I < Normalize(F) > Normalize all feature vectors.
3: (RT,V) < SplitTrainTest(F,r) > Split F' randomly into the raw training set RT and
testing set V' with ratio of r.
4: (Smajs Smin) < GetClasses(RT) 1> Determine majority classes (Sy,q;) and minority
classes (Spin) from RT

5 T 0

6: for each M < S,,,; do > Compression each majority class
7: C' < Clustering(M,|L|) > Compute the centroids C of |L| clusters by using ENN
8: M « Select(M,C,T) > Compress majority samples using C' of L clusters
9: T+ TUuM

10: end for

11: for each M € S,,;, do > Generate samples for minority classes by WGAN
12: while |M| < 7 do

13: S < WGAN _Sampling(M) > Generate new samples
14: M = Denoise(M,S) > Eliminate noise samples
15: end while > Repeat until get enough samples 7.
16: T+—TUM > Add realistic samples to T
17: end for

18: return (7,V)

dataset. We use the Edited Nearest-Neighbor (ENN) algorithm to obtain the majority of
labels that are frequently difficult to classify due to their proximity. Using a clustering
algorithm, we then compressed every label class in the majority class to reduce the number
of label classes. We eventually obtain 7 for each label class in the majority class and append
the majority class samples to the training set.

Step 4 - Augmenting Realistic Data for Minority Classes: We balance the minority class
using the oversampling model based on WGAN|[14], which uses attack data to generate
simulated attack samples. Then we validate these new samples using the train & test model
built from the actual dataset to test the output of the sampling model. Depending on the
result of the testing phase for the new attack samples as a testing set, the oversampling
model will be backpropagation to minimize error. It also removes the noise, which is new

attack samples that failed to be classified. This step will repeat until the train & test model
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can’t define actual and simulated attack data, and the number of every label class in the
minority class is equal to 7. Moreover, this step generates more realistic attack samples,
and these new attack samples may be similar to those for other attacks.

Step 5 - Results: Finally, we obtain a new training set, which contains the number of
every label class that is the same as 7, and use this training set to train and the testing set

in Step 1 to test our models. Thus, it helps us to obtain a better AI model.

2.4 Feature set Optimization

2.4.1 Feature Extraction and Cleaning

In ML, feature extraction and cleaning are crucial steps to choose and improve a subset of its
features. This step can drastically reduce computational costs and eliminate pointless data
processing during training. Generally, datasets contain raw, unclean, or imbalanced data.
There are also duplicate records and categorical data. Therefore, we need to preprocess all
datasets by cleaning, removing records, and transforming categorical data. These records
can negatively impact the training process, often leading to model overfitting. We adopt
simple methods to handle missing values of the attributes, such as removing rows containing
null values or duplicating entries.

In our method, assuming that the input D, is a list of records, where each record r is
a list or a tuple of values by columns, we initialize an empty list S, < {} to store the
unique records. Then iterates through each record in the input data, and if the record is
not already in the S, list, it adds the unique record, r, to that list. Finally, it returns the
list D, [Sy], which contains only the unique records from the input data.

In addition, the set of attributes in the training samples also influences the quality of
the AI models. Therefore, eliminating redundant attributes that do not affect malware
detection is one of the essential tasks. We used an AutoML toolkit called AutoGluon [31]

to analyze, evaluate, and remove redundant attributes.

2.4.2 Feature Vectorizing

We must transform raw data, often in JSON format, into numerical vectors to prepare
dataset features for Al model training. Many famous models, such as the GBM family
model, only accept input as a number vector, making the latter unsuitable for training
Al models. Therefore, we perform vectorization to obtain binary format features and
store them in CSV for future use. Since most of the features of the dataset have unique

values and cannot be easily categorized, the hashing technique is suitable to retain the data
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characteristics [5]. Consequently, we employ the feature hash technique in this work to

vectorize the features into a feature vector. First, we will need to define two hash functions:

e The kernel hash h : T — {1,2,...,n}. The kernel hash function h maps tokens from

the set T" to a set of indices from 1 to n. It is defined as follows:
h(t;) =index ift; €T
where ; is the i token in set T'; index is the index of the token ¢; in the set of indices.

e The sign hash ¢ : T — {—1,+1}. The sign hash function ¢ maps tokens from the set
T to the set {—1,+1}. It is typically used to represent positive and negative values of

tokens with different sign values. Specifically:

—1 if ¢; has a negative or zero value
¢(ti) =

+1 if ¢t; has a positive value
where t; is the i" token in the set T

Then we define the feature hashing function. The Feature Hashing function ¢ transforms
sequences of tokens from set T™* into a feature vector in the n-dimensional real space R™.

It is defined in Equation 2.6 as follows:

6T = R, §tr, . tr) = Y 6(t) (2.6)

7=1
where T is the set of all finite strings that contain tokens in T7; t1, ..., ;. are tokens in the
sequence; and k is the number of tokens in the sequence.

The Feature Hashing function can be equivalently represented by Equation 2.7 as follows:

n

Sltr,ote) =D (Y Lt)es (2.7)
i=1 j:h(t;)=i
where ((t;): Sign value of j token; e;: Unit vector with value 1 at the index i and 0
elsewhere; h(tj): Index of the 4% token mapped by the kernel hash function h; and n:
Number of indices.

We label and encode all category characteristics, except the last characteristic, before
applying the normalization procedure to make ML readable. The label encoding transforms
the categorical features into numerical values (the integer values begin at ‘0’). We use
the Keras library to encode categorical data into numerical data. Categorical features
are converted to binary features that are “one-hot” encoded, which means that a feature
represented by that column receives a 1 if it is one of the characteristics converted to binary

features. Otherwise, it gets 0.
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2.4.3 Feature Normalization

Suppose the feature values are more similar in the ML algorithms. If the data points or
feature values are highly dissimilar, it will take longer for the algorithm to understand
the data, resulting in lower accuracy. To address this issue, we used StandardScaler from
the Scikit-Learn library to normalize the feature range. It is particularly effective for
normalizing datasets with numerous features, outperforming other methods such as Min-
Max, Z-Score, and Robust Scaler. Normalization is used in the output obtained after the
label encoding is applied to ensure that each independent feature has a mean of 0 and a

standard deviation of 1, expressed by Equation 2.8 as follows:

X —p

g

Xnew = (28)

where X is the original feature sample, Xjew is the standardized feature sample, p is the

mean of the feature values, and o is the standard deviation of the feature values.
Normalizing the features centers them around zero with a unit standard deviation,

facilitating the ML algorithm’s learning process. This normalization technique helps speed

up convergence and improve the model’s overall performance.

2.4.4 SHAP-based Feature Set Optimization

Our method takes as input the training data X, a matrix of size n x m, where n is the
number of samples, m is the number of input features, and [ is the number of labels. The
method seeks to produce a chosen subset of features, OFS (Optimizing Features using
SHAP), containing the most essential and practical features of the original datasets. The
process starts by initializing an empty list F'S < {} to store the important features. We
train ML models M7, My, ...M}, in the training dataset. We then chose the best models
based on their results. Next, we use SHAP to explain and calculate the importance of each
feature, Xj;, in the test data. We determine the importance coefficient, p;, for each feature
of the data. The feature X, is added to the list F'S if its importance coefficient, p;, is greater
than or equal to a predefined threshold 7. Once all features have been evaluated, the list
F'S is sorted in descending order based on the importance coefficients 7. Next, we identify
the most significant features of the sorted list that meet the threshold. We then return
the important feature subset F'S as the final output OF'S for training and testing the ML
model. Consequently, the overall pseudocode for optimizing the set of features using SHAP
is presented in Algorithm 2.3.

In summary, the suggested method uses SHAP and ML models to figure out the impor-

tance weight of each feature in the dataset. Then it uses a threshold, 7, to pick the most
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Algorithm 2.3 OFS: Optimizing Feature Set Using SHAP

Input: DS - dataset with the feature set F'; M - m Al models; 7 - threshold to drop

features.
1: X,y« DS > Get dataframes for features and labels
2: X < Normalize(X) > Normalize all features to [0,1]
3: FS <« > Init the feature set list.
4: for eachm € M do > Determine the feature importance for each AI model m.
5: Al + m.fit(X,y) > Train m using the dataset.
6: if m is a boosting model then
7 shap_values,, « SHAP.TreeExplainer(m) > Compute the SHAP values of all
features based on decision tree model.
8: else
shap_values,, < SHAP.DeepExplainer(m) > Compute the SHAP values of all
features based on DL model.
10: end if
11: FS.push(shap_valuesy;) > Push the Shapley values of the model M into the list
FS.
12: end for
13: OFS <0
14: for each f € F do
15: shap_values <— FS[f] > Get SHAP values of feature f on all models M.
16: if shap_values > 7 then
17: OFS < OFSU f > Consider f being important and add to OF'S in the case of
all its SHAP values > 7.
18: end if
19: end for

Output: OF'S - Optimized Feature Set.

important and influential features based on their importance coefficients.

2.5 Experiments and Evaluation

The appliance server used in our experiments has a configuration of 2 x Intel Xeon-
Platinum 8160 (24-cores); 384GB DDR4 RAM; NVIDIA Tesla T4 16GB; SmartNIC Na-
patech NT40E3-4-PTP to validate our proposed method in Chapter 2, Chapter 3 and

Chapter 4. Suricata v6.0.3 is tuned, and new components are added to control traffic flows

and implement the deep inspection strategy described in Chapter 4 . We use Python version

3.8 as a programming language with the following libraries and frameworks: Fastai V2.3.0,

Scikit-learn V0.24.1, Matplotlib V3.4.1, Pandas V1.2.3, Numpy V1.20.2.
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2.5.1 Dataset Preparation

In this section, we prepare the datasets for experiments to demonstrate the contributions
of our proposed augmentation dataset algorithms. These datasets will also be used for
experiments in Chapter 3 and Chapter 4. In our experiments, the data preparation process

is conducted according to the following steps:

1. Define redundant attributes that are not needed in Al models based on the Autogluon

framework [57].

2. Remove redundant attribute columns from the original data set (still keeping the

original number of samples).
3. Delete the NaN and duplicate samples in the dataset after cleaning redundant features.

4. Perform a random selection of the testing samples according to the stated strategy.

The output of this step is the testing set and the raw training set.

5. Generate and augment the raw training set based on our proposed augmented dataset

algorithms. The output of this step is the augmented training set.

The datasets were prepared following the five basic steps described above. To evaluate our
proposed methods, we constructed the corresponding datasets for experimental assessment,

as detailed below:

e DS1: We selected CSE-CIC-IDS2018 and NSL-KDD, two well-known benchmark datasets,
to evaluate the effectiveness of Algorithm 2.1, the output constitute DS1. In particular,
based on the distribution of classes in CSE-CIC-IDS20- 18, we notice that there are six
classes with more than 20,000 samples and six classes with fewer than 20,000 samples.
With NSL-KDD, two classes have more than 20,000, and three classes have less than
20,000. Therefore, we decided to choose a threshold of 20,000 samples to augment the
training datasets with Algorithm 2.1.

For testing datasets, to ensure objectivity, they are built by randomly selecting samples
from the original datasets. With a maximum of 20,000 samples for each label, we
selected a testing/training sample ratio of 3:10 and then had a maximum of 6,000

samples for each class.

To augment SQL-injection detection, we also built a testbed system, as shown in Fig-
ure 2.2, to add more detection ability. In this testbed, we deploy all the necessary
standard equipment on the DMZ network, including routers, firewalls, switches, and

web servers. We use Kali Linux to perform SQL-Injection attacks on the attack
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Figure 2.2: Testbed Architecture for SQL-Injection Attack Generation

g

network. We also use the Wireshark tool to capture network traffic and then use
CICFlowMeter to extract traffic flow features such as CSE-CIC-IDS2018.

Finally, based on our dataset preparation process, we obtain two augmented datasets
DS1, illustrated in Table 2.1. Note that DS1 datasets will be comprehensively evalu-
ated in Chapter 3.

DS2: We also selected CSE-CIC-IDS2018 and NSL-KDD to experimentally evaluate
the effectiveness of Algorithm 2.2, the output constitute DS2. The CSE-CIC-IDS2018
has a total of 12 classes labeled by [Benign, Infiltration, Bot, DDos-HOIC, DoS-
GoldenEye, DoS-Hulk, DoS-Slowloris, DDoS-LOIC-UDP, BruteForce-Web, BruceForce-
XSS, SQL-Injection]. The Bengin samples in this dataset are much larger than
the attack samples. It has enough samples for Bot and DDOS — HOIC, while
SQL — Injection and BruteForce — Web have very small attack samples.

Related to NSL-KDD, it has four classes: [DoS, Probe, U2R, R2L]. Like CSE-CIC-
IDS2018, we also observe that Benign samples dominate the attack samples. However,
DoS has larger samples, while the other attacks, i.e. R2L and U2R, suffer from very

low samples.

For both datasets, the samples of each label (in each dataset) are largely imbalanced.
To enhance these datasets, the AWGAN algorithm is applied to each class, where the
parameter r (ratio between training and testing sets) is set to 7:3, and 7 (maximum
samples in a label) set to 20,000. Note that, with AWGAN setting with these pa-
rameters, the class having more than 20,000 samples will be “compressed,” selecting
only 20,000 samples. Meanwhile, the class with less than 20,000 samples will be
“zoomed” and “generated” with more realistic samples up to 20,000. A point that
should also be emphasized here is that for classes with less than 20,000 samples, the
training/test set division must be performed before applying WGAN. For example,
with the “BruteForce-Web” class of CSE-CIC-IDS2018 with 261 samples, the test set
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Table 2.1: Dificulty-Aware-based Data Augmentation

Class Original Train Test

CSE-CIC-IDS2018

Benign 4,360,029 20,000 6,000
Bot 282,310 20,000 6,000
DDoS-HOIC 668,461 20,000 6,000
DoS-GoldenEye 41,455 20,000 6,000
DoS-Hulk 434,873 20,000 6,000
Infiltration 160,604 20,000 6,000
SQL-Injection 26,797 20,000 6,000
DoS-SlowHTTP Test 19,462 13,623 4,491
DoS-Slowloris 10,285 14,826 2,373
DDoS-LOIC-UDP 1,211 1,588 279
BruteForce-Web 253 978 58
BruteForce-XSS 151 106 35
NSL-KDD
Benign 61,343 20,000 6,000
DoS 39,927 20,000 6,000
Probe 8,153 20,000 1,881
R2L 697 4,467 161
U2R 36 36 8

will be randomly selected at 30% * 261 ~ 78 samples. The remaining 183 samples will
be fed into AWGAN to generate up to 14,000 samples.

Similarly, after utilizing our AWGAN, we obtained the augmented training sets for
training Al models and test sets for evaluating them. Finally, Table 2.2 summarizes
the number of samples for each class of both datasets. In this table, the Original
column represents the number of original samples after removing NaN and duplicate
values, the Train column is the number of samples augmented by AWGAN, and the

Test column shows the original samples.

DS3: We selected EMBER2017, EMBER2018, and BODMAS, which are widely rec-
ognized datasets for malware detection, to experimentally evaluate the effectiveness

of Algorithm 2.3, the output constitute DS3. In our work, we extract and represent
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Table 2.2: AWGAN-based Data Augmentation

Label Original ~ Train  Test

CSE-CIC-IDS2018

Benign 4,360,029 14,000 6,000
Infiltration 160,604 14,000 6,000
Bot 282,310 14,000 6,000
DDoS-HOIC 668,461 14,000 6,000
DoS-GoldenEye 41,455 14,000 6,000
DoS-Hulk 434,873 14,000 6,000
DoS-SlowHTTPTest 13,067 14,000 4,082
DoS-Slowloris 6,977 14,000 2,093
DDoS-LOIC-UDP 1,120 14,000 336
BruteForce-Web 261 14,000 78
BruteForce-XSS 97 14,000 29
SQL-Injection 53 14,000 17
NSL-KDD
Benign 61,343 14,000 6,000
DoS 39,927 14,000 6,000
Probe 8,333 14,000 2,500
R2L 637 14,000 191
U2R 40 14,000 12

a PE file using the Library to Instrument Executable Formats (LIEF). We utilize
this library for both the EMBER 2017 and 2018 datasets. The library contains nine
groups of raw static features, totaling 2381 features. These groups include a byte
histogram with 256 features, a byte-entropy histogram with 256 features, and string
information with 104 features. The generic file includes ten features and header data
with 62 features. The import functions category has 1280 features, while the section
information has 255. Data directories have 30 features, while export information has

128 features.

Moreover, the EMBER datasets contain both training and testing sets. The training
dataset provides benign, malicious, and unlabeled data in three categories as 0, 1, and
—1. However, the testing set within the dataset contains no unlabeled data. To strike

a compromise, we excluded unlabeled samples from further processing and rebuilt the
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training set using only labeled data. This step will equalize the training and testing

sets and improve the performance of the ML model.

We also used the BODMAS dataset [108] for evaluation. The BODMAS dataset was
curated from a large corpus of PE files collected between August 2019 and September
2020. Each sample in BODMAS is labeled malicious 1 or benign 0. Feature extraction
for BODMAS was performed using the LIEF, consistent with the EMBER dataset.
Each sample is represented by a 2381 dimensional feature vector, encompassing various

static characteristics of PE files. Three datasets for our experiment evaluation:

— The EMBER2017 dataset contains malware and benign samples collected from
2017 and older, including 300K of each label (0 for benign/1 for malware) in the
training dataset, 100K of each label in the test dataset, and 300K of unlabeled
samples, which are marked as label -1. The total EMBER 2017 contains 1,100K

samples.

— The EMBER2018 dataset, collected in 2018, includes 300K of each label (0/1) in
the training dataset, 100K of each label in the test dataset, and 200K of unlabeled
samples, which are marked as label -1. EMBER2018 totally contains 1,000K

samples.

— The BODMAS dataset includes 57,293 malware samples from 67 malware families
and 77,142 benign samples. All samples in the BODMAS dataset are labeled as
either 0 (benign) or 1 (malicious). The total BODMAS dataset contains 134,435
labeled samples. Moreover, BODMAS, although recent, lacks standardized fea-
ture definitions and includes only feature vectors without benign binaries due to

copyright issues, limiting full reproducibility.

After releasing the original dataset in 2017 (we will call this EMBER2017), Anderson et
al. also released a new updated version in 2018 (often called EMBER2018). Compared

to the former version, EMBER2018 has many improvements, including:

— New data: EMBER2018 only contains new data collected in 2018. The EM-
BER2017 dataset only includes all pre-2018 samples.

— Duplicates and Outliers cleaned: The authors identified and eliminated abnor-
mally low- and high-density data using a fast cover tree. The authors classified
the samples as outliers if they did not geometrically contribute to the data, as
determined by a weighted fractal dimension. Duplicates were nodes in the tree

whose radius was less than the L2 norm implementation error rate.
— New features included: For every sample in EMBER2018, MD5 was present and

also provided the AVClass label for malicious samples.
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— Harder Dataset: This new dataset prioritized the addition of NET-packed software
and 32- and 64-bit samples along with benign and malicious samples. This dataset
also relied on the trusted tag in VirusTotal to prove benign origins. The trusted
tag on VirusTotal helped the authors incorporate samples from various vendors
that had false positives. The dataset prioritizes samples of significant malware
families from 2018. Some example families include Wannacry, Emotet, Qbot,
GhOst, Brambul, Zbot, Kovter, Samsam, Mirai, Coinminer, Nanocore, Cerber,

Ursnif, Redyms, Ramdo, Tinyloader, and Trickbot.

As aresult, based on technique in Section 2.4. Experiments using the EMBER2017 and
EMBER2018 datasets identified 90 redundant characteristics from the 2381 attributes
representing each PE sample. The result of the feature cleaning step produced a set
of 2291 important attributes to form the feature vectors. We removed them; their
column IDs include: “627, 636, 638, 648, 650, 652, 659, 663, 666, 667, 669, 670, 672,
673, 674, 675, 676, 849, 859, 862, 867, 883, 891, 894, 896, 898, 899, 900, 904, 905, 908,
909, 910, 912,917, 919, 920, 922, 923, 924, 926, 931, 932, 934, 936, 937, 629, 630, 635,
651, 653, 671, 861, 864, 871, 878, 884, 889, 890, 907, 911, 913, 914, 918, 925, 933, 935,
938, 939, 942, 962, 974, 989, 997, 1022, 1042, 1044, 1052, 1053, 1056, 1057, 1069, 1086,
1120, 1125, 1151, 1173, 1179, 1184, 2367".

Furthermore, we performed the optimization feature method based on Algorithm 2.3
for EMBER2017 and EMBER2018. Our method chooses a set of thresholds to compute
the optimal number of features for the classification task. We use six thresholds: 0.1,
0.075, 0.05, 0.25, 0.01, and 0.001. For each threshold, features with SHAP values >
the chosen threshold are selected, shown as Figure 2.3. We found that the threshold
of 0.025 gives the best result, shown as Figure 2.4. This threshold yields 170 (all the
features selected by the four models) and 565 (the union of all the features selected
by the four models) important features out of a total of 2,381 features in the original

dataset. We then save this set of features as a new dataset for use in the next steps.

Moreover, following the method in Section 2.4, we applied the BODMAS dataset. Using

six thresholds (0.1, 0.075, 0.05, 0.025, 0.01, and 0.001). Our analysis revealed that a

threshold of 0.01 provides an optimal balance, resulting in two refined feature sets, shown

in Figure 2.5. The intersection set selected by the four models (4 features). The union set

was selected by at least one model (165 features). Figure 2.5 illustrates the variation in

the accuracy of four models under different SHAP-based feature selection thresholds. The

results indicate that tree-based models maintain relatively stable performance, with only a

slight drop at the 0.075 threshold compared to lower thresholds. In contrast, CNN is highly

sensitive: at the 0.075 threshold, its accuracy decreases dramatically to the lowest level
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Figure 2.4: Threshold-based Performances on EMBER2018 Dataset

(95.5%) but quickly recovers as the threshold decreases to 0.05 and below. This observation

indicates that the 0.075 threshold is unsuitable, especially for CNN; as it removes too many
important features. The thresholds 0.05, on the other hand, produce a higher and more

stable accuracy, providing a better balance between retaining the relevant features and

maintaining the classification performance.
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2.5.2 Results and Evaluation

In this section, we present the results obtained from the experiments to prove the perfor-
mance of our proposed method. To evaluate the effectiveness of the proposed algorithms,

we use the following scenarios:

e S1: We thoroughly evaluate Algorithm 2.1 on the DS1 to investigate its effectiveness
in addressing class imbalance. Our goal is to ensure a more equitable representation
of all types of attack in the training set, thereby improving the model’s ability to

accurately detect frequent and rare intrusions.

e S2: The AWGAN Algorithm 2.2 is evaluated on DS2 to rigorously assess its ability
to generate realistic and diverse synthetic samples for minority classes. By directly
addressing the data imbalance at the class level, this scenario enables us to verify

whether adversarial augmentation via AWGAN can significantly boost detection rates.

e S3: The OFS Algorithm 2.3 is examined using the DS3, with a focus on static malware
detection tasks. The evaluation comprises three phases: (1) establishing a baseline
with the original dataset, (2) measuring improvements with the augmented dataset,
and (3) performing a comparative performance analysis. This scenario demonstrates

the practical impact of advanced feature selection on malware detection.

2.5.2.1 S1 Results

Originally, CSE-CIC-IDS2018 were heavily imbalanced; for example, the Benign class in
CSE-CIC-IDS2018 had more than 4 million samples, while classes such as DDoS-LOIC-
UDP and BruteForce-Web had only 1,211 and 253 samples, respectively. In NSL-KDD,
Benign began with 61,343 samples, while U2R had just 36.

After applying our balancing method, most classes were increased or compressed to up to
20,000 training samples. For instance, in DS1, DDoS-LOIC-UDP rose to 1,588, BruteForce-
Web to 978, and Benign was reduced to 20,000. In NSL-KDD, Probe was augmented to
20,000, R2L to 4,467, while U2R remained at 36 due to data scarcity.

These changes, summarized in Table 2.1, led to a much fairer distribution between
classes and provided a solid foundation for robust model training. The effect is also visible
in the t-SNE visualizations : before the balancing shown in Figure 2.6a and Figure 2.7a,
majority classes dominate the feature space and the minority classes are barely visible.
After balancing shown in Figure 2.6b and Figure 2.7b, the clusters for all classes are more

evenly distributed, with the minority classes forming clearer and more distinct groups.
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Figure 2.6: Difficulty-Aware-based Visualization of CSE-CIC-IDS2018 Training Set
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Figure 2.7: Difficulty-Aware-based Visualization of NSL-KDD Training Set

This improvement in class distribution and separation supports our observed perfor-
mance gains shown in Table 2.3, where DNN, XGB, and GBM achieved high precision,
precision, recall, and F1, all above 98. 8% in all classes. AUC values also reached nearly
100%, demonstrating the effectiveness of the method, especially for minority attack types.

However, a limitation remains: for some extremely minority classes (e.g., BruteForce-
Web, BruteForce-XSS, U2R), it was not feasible to increase their size to 20,000 due to the
lack of original data, as shown in Table 2.1. This is also reflected in the t-SNE plots, where
these classes still appear as smaller, less compact clusters. Thus, while overall balance and
detection improved significantly, detecting the rarest attacks continues to be a challenge

and warrants further research.

2.5.2.2 S2 Results

After applying AWGAN, we obtain balanced, augmented training sets for model training
and separate test sets for evaluation. Table 2.2 summarizes the number of samples per class
in both datasets. In this table:(1) The “Original” column shows the sample count after

cleaning (removal of NaN and duplicates); (2) The “Train” column gives the number of
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Table 2.3: Evaluation of Al models on Dificulty-Aware-based Data Augmentation (%)

CSE-CIC-IDS2018 NSL-KDD
Metric

DNN XGB GBM | DNN XGB GBM

Acc 99.73  99.58 99.74 | 98.80 99.66 99.43
Prec 99.80 99.59 99.59 | 98.84 99.66 99.44
F1 99.66 99.58 99.58 | 98.80 99.66 99.43
Rec 99.73 99.58 99.58 | 99.80 99.66 99.43
AUC 99.96 100 100 | 99.84 100 99.92

samples after AWGAN augmentation; (3) The “Test” column shows the number of samples
used for model evaluation.

The CSE-CIC-IDS2018 dataset has a total of 12 classes. The Bengin samples in this
dataset are much larger than the attack samples. It has enough samples for Bot and
DDOS — HOIC, while SQL — Injection and BruteForce — Web have very small attack
samples.

Related to NSL-KDD, it has four classes. Like CSE-CIC-IDS2018, we also observe that
Benign samples dominate the attack samples. However, DoS has larger samples, while the
other attacks, i.e. R2L and U2R, suffer from very low samples.

The individual models evaluated in this study achieved an F1 score of 99. 77% or higher
except for the DNN model, which indicates excellent performance, shown as Table 2.4.
We also can see that the AWGAN algorithm has greatly improved the quality of the
training data set by confirming that all AUC measurements are greater than 99. 85%.
This demonstrates the excellent efficiency gains in intrusion detection made possible by
data augmentation using the AWGAN algorithm.

We also use the distributed stochastic neighbor embedding method (t-SNE) [102] in order
to visualize high-dimensional training sets. Figure 2.8a and Figure 2.9a show the original
data before performing AWGAN-based augmentation, while Figure 2.8b and Figure 2.9b
illustrate the augmented training sets.

As illustrated in Figure 2.8 and Figure 2.9, the visualization confirms that the training
set after using the AWGAN-based augmentation has solved the challenges of sparse and
unbalanced data. The DS2 datasets had more distinct clusters corresponding to their classes
than before the augmentation. In addition, with very high intrusion detection results, as
illustrated in Table 2.4 for both datasets, AWGAN clearly qualifies to improve training set
quality.

25



2.5  Ezperiments and Evaluation

Table 2.4: Evaluation of Al models on WGAN-based Data Augmentation (%)

. CSE-CIC-IDS2018 NSL-KDD

XGB CBT GBM BME DNN | XGB CBT GBM BME DNN
F1 99.77 99.92 99.95 99.77 97.75]99.48 99.21 99.48 99.48 98.00
Acc 99.76  99.92 99.96 99.98 97.54 | 99.49 99.22 99.56 99.43 98.07
Prec 99.83 99.93 99.96 99.98 98.20 | 99.49 99.21 99.49 9941 98.03
Rec 99.76  99.92 99.96 99.98 97.54 | 99.49 99.22 99.49 99.43 98.07
FPR 0 0 0.03 0.13 | 0.67 127 0.63 077 1.22
FNR 0 0.01 0 1.37 | 037 039 030 032 226
AUC 100 100 99.99 99.99 98.69 | 99.99 99.98 99.99 99.89 99.85

(b) Augmented

Figure 2.9: AWGAN-based Visualization of NSL-KDD Training Set
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2.5.2.3 S3 Results

In this scenario, the models begin with no specified parameters, as the aforementioned
algorithm automatically generates hyperparameters based on the dataset. Based on running
all models on the EMBER2017 without tuning hyperparameters, the experiment result
showed that with XGB and CBT, the accuracy is already above 99%, while GBM and
CNN have an accuracy below 99%, shown as Table 2.5. This is not surprising, given that
numerous researchers, including the original authors of the dataset, have commented on
the relative simplicity of the EMBER dataset. Therefore, we focused only on fine-tuning
the EMBER2018 and BODMAS dataset.

Furthermore, we performed the optimization feature method based on Algorithm 2.3
for EMBER2018 and BODMAS. Table 2.6 displays the results of the F1 score when using
the 170 and 565 features of EMBER2018 dataset, indicating a superior performance when
choosing the 565 features. The accuracy for the XGB model is 97.68%, the CBT model is
97.52%, the GBM model is 97.89% and the CNN model is 95.90%.

Table 2.5: Evaluation of AT models on Original Datasets(%)

Method F1 Acc Prec Sens FAR FNR

EMBER2017 Evaluation

XGB 99.16 99.16 99.16 99.16 0.84 0.84
CBT 99.27 99.27 99.27 99.27 0.73 0.73
GBM 98.67 98.67 98.67 98.67 133 1.33
CNN 95.95 96.04 93.72 9595 3.35 4.05

EMBER2018 Evaluation

XGB 97.63 9763 97.63 97.63 237 237
CBT 97.19 9719 9719 97.19 2.81 281
GBM 97.80 97.80 97.80 97.80 2.20 2.20
CNN 94.03 94.02 94.16 94.02 597 598

BODMAS Evaluation

XGB 98.71 98.69 99.68 97.75 0.32 2.25
CBT 98.94 98.93 9988 98.02 0.12 1.98
GBM 98.90 98.89 99.94 9788 0.06 2.12
CNN 98.90 98.89 99.87 9796 0.13 2.04

To evaluate the effectiveness of our feature optimization and data balancing strategies,
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Table 2.6: Evaluation of Al models based Features set Optimization (%)

Method‘ F1 Acc Prec Sens FAR FNR‘ F1 Acc Prec Sens FAR FNR

| BODMAS (4 features) | BODMAS (165 features)

XGB 89.76 90.78 85.19 94.85 4.82 5.15 |99.28 99.39 99.28 99.28 0.61 0.72
CBT 89.76 90.77 85.17 9486 483 5.14 | 99.26 99.37 99.29 99.23 0.71 0.77
GBM 89.76 90.78 8516 94.89 4.80 5.11 | 99.13 99.26 99.09 99.16 0.74 0.84
CNN 88.03 88.95 8177 95.34 4.66 4.66 | 99.13 99.26 99.02 99.24 0.76 0.74

EMBER2018 (170 features) ‘ EMBER2018 (565 features)

XGB 97.59 9759 97.84 9734 216 2.66 | 97.67 97.68 9797 97.37 217 2.63
CBT 9745 9745 9752 9737 225 2.53 | 97.52 9752 9758 97.46 226 2.54
GBM 97.85 97.86 97.23 97.47 2.13 2.53 | 97.88 97.89 98.34 9742 2.16 2.58
CNN 95.72 9572 9571 9573 4.03 427 | 9572 9590 9564 9519 4.08 4381

we compare the model performance in the original datasets shown in Table 2.5 and in the
optimized feature sets shown in Table 2.6 for EMBER2018 and BODMAS dataset.

In EMBER2018 dataset, the original data and optimized datasets (170 and 565 features)
show minimal differences in the results. For example, XGB has Fl-scores of 97.63%
(original), 97.59% (170 features), and 97.67% (565 features). All metrics, including FAR and
FNR, remain stable across configurations, indicating that feature optimization preserves
baseline performance on this well-structured dataset.

In the original BODMAS dataset, all models achieve Fl-scores and accuracy below
98.9%, with particularly high precision for tree-based models (e.g., CBT: 99.88%). However,
when models are trained on the optimized feature set with only 4 selected features, F1 and
accuracy drop to around 89-91%. When using 165 optimized features, all models regain
their high performance, with F1 and accuracy returning to 99.1-99.4%, and precision,
recall (sensitivity), FAR, and FNR are all comparable to or slightly better than the original
baseline.

This demonstrates that excessive feature reduction (e.g., to 4 features) can degrade
performance, but a carefully selected subset (165 features) maintains or even improves the
model’s effectiveness compared to training on all original features. In particular, the XGB
model achieves an Fl-score of 99.28% and accuracy of 99.39% on the 165 feature dataset,
slightly outperforming its original F1 of 98.71%.

For BODMAS dataset, optimizing and balancing features not only reduces model com-
plexity, but also maintains or improves detection quality, particularly for the most important
metrics (F1, Acc, Prec, Sens, FAR, FNR). For EMBER2018 dataset, the model is robust

to both original and optimized feature sets, with performance differences less than 0.1
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percentage points.

Feature optimization and data balancing, when carefully applied, achieves equal or
superior results to the original baseline, while reducing input dimensionality and potential
overfitting. This validates the practical utility and robustness of our approach across

datasets and model types.

2.6 Summary

This chapter addresses one of the most significant challenges in intrusion detection: data
imbalance, specifically, the redundancy of samples in the majority class and the scarcity of
samples in the minority class. These issues not only lead to biased machine learning models
that struggle to detect rare attacks but also increase the false positive rate. To overcome
this, the chapter proposes, develops, and rigorously evaluates the dataset augmentation
strategy and the optimization of the feature set.

The beginning of the chapter presents a detailed analysis of the practical challenges
posed by network datasets such as CSE-CIC-IDS2018 and EMBER, where benign traffic
dominates overwhelmingly, while attack samples, especially novel or sophisticated ones
(e.g., infiltration, exfiltration, APT), are extremely limited. Relying solely on conventional
or random oversampling methods often results in synthetic data that is noisy, less realistic,
and can even degrade model performance.

To address these issues, the chapter introduces novel augmentation dataset techniques
for machine learning. Specifically, the proposed method uses the Edited Nearest Neighbors
(ENN) algorithm to partition the dataset into 'easy’ and difficult’ subsets. For the majority
class within the difficult subset, a clustering-based compression technique using KMeans
is applied to reduce redundancy while still preserving the most representative features of
the model. For the minority class, in addition to a zooming technique that generates
new samples around the original points, the method also uses WGAN to generate new
attack samples. WGAN not only learns the true distribution of attack data, but also
produces high-quality samples while assessing the quality of the generated data to enrich
the minority class. Furthermore, we also propose the feature set optimization method,
which reduces the dimensionality of features, thus increasing diversity while maintaining
model interpretability.

The entire approach is empirically evaluated on both public and real-world datasets. The
results show that the proposed method significantly improves the detection of rare attack
classes, reduces false positives, and improves model stability. However, comprehensive
comparisons will be made in the following chapters.

These research results have been partially presented in published works, including three
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articles in respected journals (VVH-J2, VVH-J1, VVH-j3) and two conference paper (VVH-
C2, VVH-C4), highlighting the novel and important contributions discussed in this chapter.
Specifically, VVH-J2 presents an algorithm that addresses the challenge of class imbalance
in network intrusion datasets through data compression and zooming techniques. VVH-J1
and VVH-CJ propose GAN-based methods capable of generating new samples to augment the
manority class, thus mitigating data imbalance. VVH-j3 introduces a feature optimization
approach to improve the quality of the dataset. In general, the content of these publica-
tions demonstrates the originality and scientific significance of the research contributions

introduced in this chapter.
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Chapter 3

Enhancing Al-powered Intrusion Detection

with Mutual Deep and Boosting Inference

Building upon the enhanced data foundation established in Chapter 2, Chapter 3 focuses on
harnessing the synergistic power of deep learning methods and modern boosting algorithms.
This chapter changes the focus from the “quality” of input data to the “quality” of detection
models, explaining how to effectively combine models like CNN, XGBoost, Light GBM, and
CatBoost using methods like soft voting and stacking, which allows each model to work
together well while being understandable and handling uncertainty effectively. Furthermore,
mutual support and integration of these models increases the overall resilience of the
proposed system; when one model fails to detect an attack, another may succeed and
vice versa. The selection and integration of these approaches in this chapter also serve as
an essential preparatory step toward building a practical, large-scale intrusion detection

and defense system, an objective that will be further developed in the next chapter.

3.1 Problem Statement

In the evolving threat landscape, traditional machine learning techniques often fail to
recognize sophisticated cyberattacks due to their limited representation capacity. As Al-
based intrusion and malware detection systems are increasingly deployed in practice, one
of the key challenges is optimizing the performance of machine learning models to achieve
high accuracy, robustness, and generalization in real-world scenarios. Traditional machine
learning methods, such as boost models or deep neural networks, each have their own
advantages and limitations.

Boosting models such as XGBoost, Light GBM, and CatBoost excel in capturing non-
linear features and often perform well in structured datasets [18]. However, they may
lack the ability to detect subtle anomalies or abstract patterns, which are strengths of deep
neural networks (CNNs, DNNs). In contrast, deep learning models, especially convolutional
neural networks, have shown great promise in detecting sophisticated attack patterns, but
are often susceptible to noisy data, are harder to interpret, and typically require substantial
computational resources [1].

Another pressing issue is that most current approaches rely on single-model architectures
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or only simple combinations of different models, resulting in unstable performance and
limited resilience against adversarial attacks or complex real-world data [38]. Furthermore,
selecting the optimal model for each dataset and scenario is a challenging task, requiring a
delicate balance between accuracy, robustness, inference speed, and deployment feasibility.

These challenges highlight the need for a promising approach based on ensemble learning,
which takes advantage of the complementary strengths of strengthening models and deep
learning architectures. Integrating diverse models can reduce the risk of individual model
bias or vulnerability while improving the detection of common, rare, or sophisticated attack
patterns.

In this chapter, our aim is to answer the following problem statement: How can we
design a flexible ensemble learning framework that optimizes discrimination,
enhances robustness, and maintains operational efficiency for intrusion and
malware detection?

To address this question, the proposed solution includes the following:

e Designing a mutual ensemble inference strategy through soft voting and stacking,
allowing for complementary and mutually reinforcing detection capabilities across

models.

e Explicitly improving system-level resilience by taking advantage of the compensatory
nature of the ensemble. When one model fails to detect a threat, others in the ensemble
may still succeed, thus increasing the overall robustness and reducing the risk of missed

detections.

e Assess performance across metrics such as accuracy, F'1 score, robustness to adversarial

variation, system-level resilience to missed detections, and computational overhead.

This approach aims to harness the complementary strengths of both deep and boost
models, leading to a unified detection mechanism that is accurate, robust to model weak-

nesses, and practical for deployment in real-world scenarios.
3.2 Network Intrusion Detection via AI-Powered Deep
Analysis

3.2.1 Direction Approach

Suppose Pi(f), Pa(f),...Py(f) are the probability outputs of the n Al models for a feature

vector f; w1, wa,..., wy are the weight ratio that represents the importance of model where
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Figure 3.1: Network Intrusion Detection by Using Al-powered Deep Analysis
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regular and attacks network flow by the following formula:

ELPred(f) = Pi(f) *wi (3.1)
=1

We developed the SDAID solution, a comprehensive network intrusion detection ap-
proach that uses deep Al-powered analysis to identify anomalous behavior, as illustrated
in Figure 3.1. However, within the scope of this chapter, we focus solely on Al-powered deep
analysis for network intrusion detection, specifically the DeepInspector component; other
techniques will be presented in the following chapter. In Deeplnspector, once it receives
the flow data, it will perform Al-powered deep inspection by performing three core tasks

as follows:

1. FeatureExtractor: this component takes on the role of extracting features from each
network flow. CICFlowMeter can be used to perform this task by transforming a

network flow into a vector of 83 features [44].

2. PAID-BasedDetector: this detector assumes Al- powered deep analysis. Its role is to
analyze a feature vector as input and determine whether it is benign or an intrusion
attack as output. Deep-sequence analysis powered by Al is described in more detail

in Section 3.2.

3. IoCGenerator: this module takes the result of the PAID-BasedDetector as input,
processes it, and generates an alert message (msg) for the Alarm component of IDPS. It

also generates an indicator of compromise (IoC) from flow features such as Destination
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Algorithm 3.1 PAID: Perform an Ensemble Learning for Al-powered Intrusion Detection
Model: XGB - XGB trained model; DNN - DNN trained model; GBM - GBM trained

model
Input: f - traffic flow.
Output: (msg, [oC) - (alert message; generated new IoC)

1: R« 0

2: '+ CICFlowMeter(f) > extract 83 features of traffic flow f

3: Fin < F\[FlowlD, SrcI P, SrcPort, Label| > remove 4 unused features

4: Cats < [DstPort, Protocol] > Categorical Variables

5. Conts < Fin \ Cats > 77 Continuous Variables

6: Perform three processes P1,P2,P3:

7: P1: dnn_preds <— DN N.predict(Cats,Conts) > perform the prediction using DNN
model

8: P2: xgb_preds + XGB.predict(Cats,Conts) > perform the prediction using XGB
model

9: P3: gbm_preds < GBM.predict(Cats, Conts) > perform the prediction using GBM
model

10: Wait P1, P2, P3 finished.

11: avgs < (zgb_preds + dnn_preds + gbm_preds)/3)

12: FC <+ avgs.argmaz(axis = 1) > get the flow labels from 0 to 11

13: if FC! =0 then > classified as network attacks

14: msg < Alert(FC) > constitute an alert by using metadata from the flow f; set
alert category being as label

15: R < IoCGenerator(FC)  © generate a new IoC to handle the next similar flows

16: end if

17: return msg; [oC

IP, Port, Protocol in the case of PAID-BasedDetector recognized as an attacked
intrusion. This IoC is then sent to the Signatures component of traditional IDPS
in order to update his IoC set. Note that when detecting a benign flow, the loC and

a null message are returned from the IoCGenerator.

The extraction of network traffic flows described above does not affect the processing of
network traffic flows corresponding to the Other case. It indicates that the deep analysis
process does not obstruct or discard network traffic. However, Al-powered deep analysis
concentrates on anomaly detection and updating the IDPS ruleset with new signatures to
prevent network attacks. In addition, the alert provides information for the administrator
to have a plan for early network attack mitigation.

The Deeplnspector component within our SAID method employs PAID, an Al-driven
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deep analysis model. Based on the study in [63, 57], we acknowledge that DNN, GBM,
and XGB are presently providing the most accurate network intrusion prediction results.
Consequently, our in-depth analysis examines and employs these three methodologies. In
addition, to take advantage of the strengths of both approaches, we propose combining
DNN, GBM, and XGB in deep analysis for intrusion detection using ensemble learning.
In Algorithm 3.1, network traffic is first captured, extracted and modeled by 79 feature
vectors. Next, these vectors are put into the XGB, GBM, and DNN models through three
concurrent processes P1 and P2 P3. Once these processes are completed, the prediction
results are combined with the function argmaz(z) to obtain a better result following the
formula: avgs = (xgb_preds+dnn_preds+gbm_preds)/3 and perform: avgs.argmaz(azxis =
1) to get the final result. Lastly, depending on the outcome of the above step, if the network
attack is detected, the IDPS will generate a new rule to drop/reject the network attacks

and send an alert to the administrators.

3.2.2 Network Traffic Flow Modeling

As mentioned above, one of the core tasks in Deeplnspector is to model a network traffic
flow using a feature vector. There are also several ways to extract features from a network
flow, such as CICFlowMeter, KDD99Extractor [64]. For CICFlowMeter, it allows to model
a traffic flow in PCAP format into a vector of 83 features. Meanwhile, KDD99Extractor
extracts 41 features for each flow.

In the SAID method, we propose using CICFlowMeter to perform the feature extraction
task. From the output vector of 83 features, we recognize that “FlowlD, SrcIP, SrcPort, and
Label” are redundant features. We ultimately retained 79 features as input vector for the
Al-powered analysis. In this vector, ‘Dst Port, Protocol’ are considered the categorical
variables for classification. Thus, the 77 remaining features are considered continuous
variables. Deeplnspector will analyze and determine the intrusion attacks based Al models

described in the following subsections.

3.2.3 DNN-based Intrusion Detection Algorithm

The network intrusion detection with the DNN model using the tabular learner technique
of the FastAl development framework achieves the highest precision while minimizing the
detection rate compared to other ML / DL models [57]. Therefore, we represent the
DNN model using FastAl. However, in a DNN model, it is difficult to identify the optimal
hyperparameters for efficiency and performance. In order to design the best DNN model,
we use an Adaptive Experimentation Platform that employs Bayesian Optimization to turn

the hyperparameters to obtain the optimal model.
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Figure 3.2: DNN-based Intrusion Detection.

Our DNN model is depicted in Figure 3.2. This architecture consists of four essential
components: categorical variables, continuous variables, hidden layers, and output layers.
Variables of type have discrete non-numeric values, such as IP address, protocol, etc.
Continuous variables, on the contrary, encompass a range of values. Based on the feature
vector generated from CICFlowMeter mentioned above, our DNN architecture is established

as follows:

e The two features, DstPort and Protocol, are treated as categorical variables. Each
feature will go through categorical embedding and dropout. The 77 features re-
lated to network traffic flows (specifically FlowDuration, TotFwdPkts, TotBwdP-
kts, TotLenFwdPkts, TotLenBwdPkts, FwdPktLenMax, FwdPktLenMin, FwdPk-
tLenMean, FwdPktLenStd, BwdPktLenMax, BwdPktLenMin, BwdPktLenMean, BwdP-
ktLenStd, FlowByts/s, FlowPkts/s, FlowIATMean, FlowIATStd, FlowIATMax, FlowIAT-
Min, FwdIATTot, FwdlATMean, FwdIATStd, FwdIATMax, FwdIATMin, BwdIAT-
Tot, BwdlIATMean, BwdIATStd, BwdIATMax, BwdIATMin, FwdPSHFlags, BwdP-
SHFlags, FwdURGFlags, BwdURGFlags, FwdHeaderLen, BwdHeaderLen, FwdPk-
ts/s, BwdPkts/s, PktLenMin, PktLenMax, PktLenMean, PktLenStd, PktLenVar,
FINFlagCnt, SYNFlagCnt, RSTFlagCnt, PSHFlagCnt, ACKFlagCnt, URGFlagCnt,
CWEFlagCount, ECEFlagCnt, Down/UpRatio, PktSizeAvg, FwdSegSize- Avg, Bwd-
SegSizeAvg, FwdByts/bAvg, FwdPkts/b- Avg, FwdBlkRateAvg, BwdByts/bAvg, BwdPkts/b-
Avg, BwdBlkRateAvg, SubflowFwdPkts, SubflowFw- dByts, SubflowBwdPkts, Sub-
flowBwdByts, InitFwdWinByts, InitBwdWinByts, FwdActDataPkts, FwdSegSizeMin,
ActiveMean, ActiveStd, ActiveMax, ActiveMin, IdleMean, IdleStd, IdleMax, IdleMin)

are used as continuous variable. These features are normalized by BatchNorm1D.

e Layer 1: The categorical class label of each network data flow is also combined with
the input features into a vector of 80 features in the first hidden layer for training. It

is composed of three standard blocks: “Linear”, “ReLLU” and “BatchNorm1D”. Using
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a hyperparameter optimization framework, the output of the first hidden layer is set

to 400 features.

e Layer 2: For the second hidden layer, its structure is the same as that for the first
hidden layer. However, from 400 input features, its output is normalized to 200 using

the hyperparameter optimization framework.

e (lassification: The final output layer assumes the role of classification through the
linear filter. This set maps from 200 input features to 1 unique value representing a
type of intrusion attack. In our work, except for ‘Benign’ flow, we are also interested in
11 intrusion types: Bot, BruteForce-Web, BruteForce-XSS, DDOS-LOIC-UDP, DDoS-
HOIC, DoS-Hulk, DoS-GoldenEye, DoS-SlowHTTPTest, DoS-Slowlor- is, Infiltration,
SQLInjection.

Note that Figure 3.2 illustrates our DNN architecture for Al models trained from datasets
with feature sets like CICFlowMeter. Thus, it has to be modified in the DNN settings in

the case of using another set of features.

3.2.4 Boosting-based Intrusion Detection Algorithm

The Boosting algorithms that provide superior classification performance in terms of accu-
racy and speed. In boosting learning, multiple models are constructed sequentially. The
first model was constructed using arbitrary guesswork, whereas the second was based on
residuals. The updated model was created by combining the two models. XGB is also an
ensemble technique: It combines numerous decision trees to create a model composed of a
decision tree forest. An individual decision tree is constructed by sorting all features and
evaluating each conceivable split for each feature. The rule for a node is determined by the
division that yields the highest score for the objective function [90]. Due to its performance
and scalability, its prominence is increasing.

We use boosting models with several hyperparameters to detect network intrusions.
First, we employ regularization to combat overfitting and avoid overly restrictive modeling
of the training data. We also configure additional effective parameters, including Maxi-
mum Depth, Minimum Child Weight, and Gamma. The tree may split without correct
regularization until it can precisely predict the training set, resulting in overfitting. The
documentation for these hyperparameters can be found in Subsection 3.2.5. Moreover, we
use our balanced datasets for training with boosting learning models. The experiments
in Subsection 3.2.6 prove that the increase in learning models is among the best learning

models to achieve an excellent precision detection rate compared to other DL models.
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Table 3.1: Hyperparameter Optimization

Model Hyperparameter Value Optimal
Learning rate [0.001, 1.0] 0.003
Batch size [16, 32, 48, 64, 96, 128] 64
DNN
Epochs 1,2, ..., 15, 16] 5
Layers (200, 100], .., [1000, 500]] 1400, 200]
Learning rate 0,1] 0.01
XGB  n_estimators [1,00] 30
max_depth [0,00] 6
Learning rate [0,1] 0.02
GBM  min_samples_leaf [1,00] 30
max_depth [0,00] 9

3.2.5 Hyperparameter Optimization

We select the model parameters based on a technique called Hyperparameter Optimization
[78]. We use Ax for optimal parameters. Ax is a platform for optimizing any experiment,
including ML experiments, A /B tests, and simulations. We use a technique called Bayesian
Optimization. Bayesian optimization starts by building a smooth surrogate model of the
results using Gaussian processes based on observations from previous rounds of experimen-
tation [61].

In the DNN model, four hyperparameters can be tuned and take two types of values:
range and choice, as shown in Table 3.1. From that, we obtained the learning rate being
0.003; batch size 64; the number of epochs 5; and [400, 200] for the features of layers. The
XGB and GBM are also configured for acting as a tree booster with six hyperparameters

explicitly defined in the training phase. The optimal values are also illustrated in Table 3.1.

3.2.6 Experiments and Evaluation

For the experimental environment, we use the setup presented in Section 2.5. In this section,
we present the results obtained from the deep experiments to prove the performance of
our proposed method, PAID-based intrusion detection. We use DS1, prepared in Subsec-
tion 2.5.1, to experimentally evaluate the effectiveness of our approach. DS1 consists of two
datasets: CSE-CIC-IDS2018 and NSL-KDD, both of which have been augmented using the
method described in Subsection 2.3.1.
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Table 3.2: Confusion Matrix of S1 Evaluation
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We built the PAID-based Deeplnspector tool from the proposed method to evaluate our
method with the augmented datasets mentioned above. To evaluate PAID Algorithm 3.1,

we perform the two scenarios described as follows:

e Scenario S1: Use the augmented CSE-CIC-IDS2018 dataset to train PAID. Four main
performance metrics are used to evaluate the performance of PAID. Moreover, we also

measure the performance of each model constituted to PAID.

e Scenario S2: In this scenario, we evaluate the PAID based on NSL-KDD, augmented
from the NSL-KDD dataset, with the same method. However, NSL-KDD has only 41
features and four classes. Among those attributes, ‘duration’ is considered redundant
and removed in this dataset. Two features ‘protocol_type’, ‘service’ are used as
categorical variables and the 38 others features (flag, src_bytes, dst_bytes, land, wrong_-
fragment, urgent, hot, num_failed logins, log- ged_in, num_compromised, root_shell,
su_attempted, num_root, num_file_creations, num_shells, num_acce- ss_files, num_out-
bound_cmds, is_host _login, is_guest_login, count, srv_count, serror_rate, srv_serror_-
rate, rerror_rate, srv_rerror_rate, same_srv_rate, diff_srv_rate, srv_diff_host_rate, dst_-

host_count, dst_host_srv_count, dst_host _same_srv_rate, dst_host_diff_srv_rate, dst_-
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Table 3.4: Performance Evaluation based Network Intrusion Detection

, S1 (CSE-CIC-IDS2018) S2 (NSL-KDD)
Metric

DNN XGB GBM PAID | DNN XGB GBM PAID

Acc 99.73 99.58 99.74 99.97 | 98.80 99.66 99.43 99.69
Prec 99.80 99.59 99.59 99.97 | 98.84 99.66 99.44 99.69
F1 99.66 99.58 99.58 99.97 | 98.80 99.66 99.43 99.69
Rec 99.73  99.58 99.58 99.97 | 99.80 99.66 99.43 99.69
AUC 9996 100 100 100 |99.84 100 99.92 99.99

host_same_src_port_rate, dst_host_srv_diff_host rate, dst_host _serror_rate, dst_host_-
srv_serror_rate, d- st_host_rerror_rate, dst_host_srv_rerror_rate) considered as contin-
uous variables of DNN model. Thus, the DNN settings in this scenario have to change

the input of Layer 1 to 41 features and the output of the Classification layer to 4.

3.2.6.1 S1 Results

As mentioned above, the purpose of using the CSE-CIC-IDS2018 dataset is to objectively
compare the effectiveness of PAID with methods in other studies that also use the same
CSE-CIC-IDS2018 dataset. The confusion matrix illustrates the results of our experiment
performed with the PAID method, shown in Table 3.2. Moreover, we also implement
the DNN, GBM, and XGB methods and compute all their performance metrics, such as
accuracy, precision, and Fl-score, etc. Consequently, we present the evaluation results in
the first part of Table 3.4.

In this scenario, 3/6000 In filtration attacks are denoted as BruteForce —Web; 1/6000
Infiltration attacks are defined as DoS — SlowHTT PTest; 1/35 Brute — Force — XSS
attacks are defined as Infiltration and 1 Benign flows are considered intrusion. The
false negative rate is low: only 7 Infiltration attacks (in total 43,236 attacks) are not
detected by PAID. Meanwhile, the false-positive rate is remarkable: only one benign flow
is considered an intrusion. In general, the accuracy of the DNN, XGB, GBM and PAID
models is 99.73%, 99.58%, 99.46% and 99.97%, respectively. These results confirm that our
proposed PAID method is the best.

3.2.6.2 S2 Results

Based on NSL-KDD, we use the augmented training set to train the DNN, XGB, GBM,
and PAID models and perform the prediction on the testing set. Note that in this case, the
PAID algorithm is set to four class labels corresponding to NSL-KDD. We consequently

70



3.2 Network Intrusion Detection via AI-Powered Deep Analysis

Table 3.5: Comparison of PAID with other SOTA methods

Method Acc Prec F1 Rec

CSE-CIC-IDS2018-based Evaluation

PAID (our) 99.97 99.97 99.97 99.97
WGAN+IDR [22] — 99 98 07

RANet [113] 96.73 —  96.59 96.73
Adaboost [55] 99.69 99.70 99.70 99.69
Autoencoder [21] 99.20 95.00 - 98.90
AUE [114] 97.90 98.00 98.00 98.00

DSSTE + miniVGGNet [68] 96.99 97.46 97.04 96.97
LSTM + AM + SMOTE [67] 96.20 96.00 93.00 96.00

NSL-KDD-based Evaluation

PAID (our) 99.69 99.69 99.69 99.69
Autoencoder [3] 99.20 - - 99.27
Multiple LSTM [52] 98.94 - - 99.23
SMO [49] 96.20 - : ;

RANet [113] 83.23 —  82.57 83.23
DNN [105] 78.50 81.00 76.50 78.50

indicate this experiment results for the PAID as the confusion matrix shown in Table 3.3.
In more detail, we have the results of S2 with 1/161 R2L attacks labeled as U2R and 1/8
U2R attacks labeled as the Probe. The total attacks on the 17 network (including 7 Probe,
9 R2L and 1 U2R) are not detected by PAID, and 10 Benign flows are considered intrusion.
For the performance metrics for the three trained models, the accuracy for the DNN model
is 99.36%, for the GBM model it is 99.45% and for the XGB model it is 99.53%. Finally,
the PAID gets 99.69% of accuracy. All metrics allowing for evaluation results are shown
in the second part of Table 3.4. It also indicates that PAID has the greatest performance

compared to the other models.

3.2.7 Comparison with SOTAs

In favor of well-known datasets, such as NSL-KDD and CSE-CIC-IDS2018, our experiment
results can be compared with other SOTA methods. The comparison of intrusion detection
performance between PAID and SOTA is summarized in Table 3.5. It is clear that the F1
score and the accuracy of our PAID method reach the same 99.69% with the NSL-KDD
dataset, higher than the accuracy of all compared models, such as Adaboost Autoencoder
+ Softmax, which is 99.20% accuracy, or Multiple LSTM, which is 98.94% accuracy. With
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the CSE-CIC-IDS2018 dataset, the accuracy of PAID is 99.97%; it is also higher than the
accuracy of other compared models; for example, the Adaboost has 99.69% of accuracy,
the DSSTE-niniVGGNet has an accuracy of 96.99%, or AUE has an accuracy of 97.90%.

Our experiments also indicate that PAID-based prediction has the same complexity and
analysis speed as DNN-based prediction with respect to deep analysis speed. This benefit
resulted from the concept of concurrent ensemble learning and performance. Consequently,
the accuracy, precision, and speed results demonstrate that PAID is currently the most
efficient learning model.

Based on experimental findings, the XGB and GBM models have the shortest execution
time compared to the DNN and PAID models. Moreover, the accuracy of the PAID ensem-
ble learning model is not significantly greater than that of the XGB model. Administrators
can select the ensemble learning PAID, XGB, or GBM model to investigate in-depth traffic

flows based on the network size, scope, and security level.

3.3 Malware Detection via Mutual Deep and Boosting

Ensemble Learning

3.3.1 Approach Direction

We represent executable files as binary feature vectors to construct a classifier for malware
detection. For this purpose, datasets often provide comprehensive features extracted from
real-world executables. With these datasets and features 1...n, we can construct a vector
X for each input sample such that X € {0,1}". X; = 1 indicates the presence of feature
X and X; = 0 indicates its absence.

Let’s assume that the probability outputs of n Al models for a feature vector f are
Pi(f), Py(f),..., and P,(f). In our method, we perform soft voting ensemble learning for
these above models following the formula: Poting = %Z?:l Pi(f). Finally, we use soft
voting (Pyoting) as the base model and individual models (P;) to perform stacked ensemble
learning.

We apply ensemble learning, including soft voting and stacking, to build binary clas-
sification models for malware detection. This approach also improves resistance against
evasive attacks that attempt to alter, obfuscate, or compromise the system. The method we
propose in this study is called MDOB, an acronym for “Enhancing Resilient and Ezplainable
Al-Powered Malware Detection using Feature Optimization and Mutual Deep+Boosting
Ensemble Learning.” Figure 3.3 illustrates the comprehensive architecture of our MDOB
method.

In MDOB, the first stage presented in Subsection 2.4.4, is feature optimization, with
the aim of reducing the number of features and identifying the most significant features to

improve the performance of AI models. Then, we combine ensemble voting and stacking
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Figure 3.3: Architecture of MDOB-based Malware Detection

learning methods to enhance the accuracy of the MLL model. Thus, MDOB aims to detect
malware through the following main steps:

Step 1: We begin by utilizing the techniques described in Subsection 2.4.1 to extract,
clean and vectorize the dataset. For example, the data are scaled using Equation 2.8. This
process yields a cleaned and normalized dataset ready for the next steps.

Step 2: We optimize the feature set by applying Algorithm 2.3 to analyze and choose the
most significant features, thus reducing the data dimension for the training and detection
phase. By removing irrelevant features, the output improves the training and testing sets,
enabling more efficient training and testing in the subsequent steps.

Step 3: Using the optimized feature from Step 2, we build the Al models using three
main ideas:

1. Combining multiple Al models, including deep models such as DNN, CNN, etc., and
gradient-boosting models to enhance resistance against alter, obfuscate, and improve
the accuracy of malware detection.

2. Developing an Al model that utilizes both ensemble voting and ensemble stacking to
enhance malware detection performance.

3. Performing inference-based malware detection to improve reasoning speed utilizing

multiple complementary Al models through a combination of DL and GBM.
Although MDOB is a comprehensive approach, within the scope of Chapter 3, we focus

mainly on methods to improve the performance of machine learning models, which is Step
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3. The Subsection 3.3.2 will detail our mutual deep + boosting ensemble learning approach.

3.3.2 Mutual Deep and Boosting Learning

As analyzed and evaluated in Section 1.3, malware detection based on executable file
behavior analysis with Al models can currently be categorized into two main approaches:
using DL models or GBM models. However, relying solely on a single model or focusing only
on combining multiple models of the same type does not effectively detect different types
of malware. Therefore, in this study, we propose a mutual learning model that integrates
both the DL and the GBM models. The selection of DL and GBM models for our Al
framework will be determined using AutoML frameworks such as AutoGluon. AutoGluon
easily supports many Al models, including deep learning models like CNN and DNN, as
well as gradient boosting methods such as XGB, CBT, and GBM, all of which fit well with
the MDOB teamwork approach.

Moreover, AutoGluon offers automated hyperparameter tuning, model selection, and
performance optimization, which are essential for efficiently handling high-dimensional
datasets like EMBER. However, through empirical evaluation of the DL, and GBM models,
we have observed that DL models generally do not achieve as high performance as GBM
models (as demonstrated in the experimental results in Subsection 3.2.6). Consequently,
our mutual learning approach will leverage multiple GBMs while selecting only the most
optimal DL model to maximize the strengths of each Al model type.

In particular, DL models are effective in identifying complex patterns, and GBM al-
gorithms are excellent at making firm decisions. Running them simultaneously speeds up
analysis and improves detection accuracy, leading to a stronger system that can quickly
adapt to new threats. By combining these methods, we can build a strong defense system
that adapts to cyber threats, enabling us to make real-time updates and improvements. This
framework strengthens our cybersecurity measures and helps organizations react proactively
to possible vulnerabilities.

Deep learning-based detection methods have recently gained popularity due to their
ability to automatically extract features from large datasets. These techniques, which
employ neural networks to increase the accuracy and efficacy of identifying patterns in
complex data, are essential for several applications, such as malware or intrusion detection.
We designed our CNN model for binary classification tasks, shown in Figure 3.4. The CNN

model architecture is defined as follows:

e Input Layer: The input shape is (columns, 1), where columns represents the number

of features.
e Convolutional Layer: Consists of 128 filters with a kernel size of 3 and ReLLU activation.
e MaxPooling Layer: Downsamples the convolutional layer output with a pool size of 2.

e Flatten Layer: Flattens the previous layer’s output to a 1D tensor.
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Figure 3.4: Architecture of CNN Model

e Fully Connected Layers: This consists of several dense layers with decreasing units:
2048, 1024, 512, 256, 128, 64, and 32, all using ReLLU activation.

e Dropout Layer: Apply dropout regularization with a dropout rate of 0.5 to prevent

overfitting.

e Output Layer: Consists of a single neuron with sigmoid activation, outputting the

probability of the positive class.

The Adam optimizer compiles the model with a learning rate and a binary cross-entropy
loss function. Accuracy is monitored during training. During training, we select the best
model based on validation accuracy. The CNN model aims to classify input data into one
of two classes based on the features provided.

This step aims to enhance the accuracy and effectiveness of detection systems by using
machine learning techniques. It consistently improves the performance of detection tasks

in a wide range of settings by combining several ML, models into a single strong model.

3.3.3 Combination of Voting and Stacking Ensemble Learning

Our approach integrates voting and stacking learning to construct a more robust model
using multiple Al-based classifiers. The method first applies soft voting to combine prob-
ability predictions from different AI models and then uses stacking to train a new model.
This two-layered ensemble strategy improves predictive performance and generalization by
taking advantage of the complementary strengths of the individual base learners.

In particular, the algorithm takes as input a training dataset T'D with an optimized
feature set OFS. It first trains a set of Al models MS = {M;, My, ..., M,,}, then uses
the soft voting method to aggregate the predictions and generate a new meta-training set

M'TD, which is subsequently used to train a meta-model M M. During the training phase
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Algorithm 3.2 VSEL: Combination of Voting and Stacking Ensemble Learning
Input: 7D = {(X%y")}Y, - training dataset with optimized features; MS =
{My, My, ..., M,,} - set of m base models; model_params - optimized hyperparameters of
m Al models; K - number of folds for building meta training dataset (MTD).
1: MTD <+ () > Init MTD
2: {T'Dy,TDy,....TDg} < Split(TD, K) > Split the training dataset into K folds
3: for each fold k£ € 1..K do
4 TDyain < TD\TDy; TDyy < TD, > Use K — 1 folds for training and 1 fold

for validation

5: for each M; € M S do
6: M; < Train(M;, T Diyain, model _params|M;])
7 end for
8: for each (X,y) € T Dy, do
9: meta < 0;  vote_sum < 0 > Create the meta-feature vector
10: for each M; € MS do
11: p; < M;(X) > Predict the probability for X using the trained base model
M;
12: meta.push(p;)
13: vote_sum <— vote_sum + p;
14: end for
15: Dvote <— vote_sum/m > Calculate soft voting prediction from all base models
16: meta.push(pyote) > Add soft voting result as an additional feature m+1 in the
meta-layer
17: MTD.push(meta,y) > Add the meta-feature vector and corresponding label to
MTD
18: end for
19: end for

20: MM <« AutoML.SelectBestModel(MT' D) > Perform AutoML on MTD to select the
best as the meta model

21: for each M; € MS do

22: M; < Train(M;, T D, model _params[M;]) > Retrain all base models on the whole
training dataset to be used in final prediction

23: end for

Output: MS - n trained AI models; MM - trained meta model.

for the base model, we employ techniques such as cross-validation to improve robustness
and mitigate overfitting. Each model in the set M S is trained with its own optimized
hyperparameters. This process is illustrated in Algorithm 3.2.

Furthermore, adversary attacks often employ obfuscation and deformation techniques
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to generate new types that can evade malware detection methods. However, our method
combines multiple MLL models and ensemble learning techniques to detect malware; this
allows us to test an input PE file that embeds malware in these models. If this model fails
to detect malware, other models may be able to detect it. This work creates the ability to

detect and prevent adversary attacks [24].

3.3.4 Hyperparameter Optimization

To optimize ML models in our approach, such as training individual models, we use Optuna
[6] to find the best parameters for each model, ensuring that their performance is maximized.
This work is done through Algorithm 3.3.

Algorithm 3.3 Hyperparameter Optimization using Optuna
IHPUt: mOdel - AI mOdel; Dt'rain - (Xtrain7ytrain) - trainiﬂg Set; Dtest - (Xtestaytest> -

testing set; Ny.as - number of trials; Tiimeons - Optimization timeout; params - list of

hyperparameters.

1: function OBJECTIVE(trial)

2: model_params < {p1, p2,P3,-..,pn} > Initialize dictionary of hyperparameters for
the model
3: for p € params do > Use Optuna to suggest hyperparameter values for each

parameter p

4: model_params|p| < trial.suggest_(parameter_type)(“p”, (min_value), (max_-
value))
5 end for
6 clf < model(**model_params) > Instantiate model with current parameters
7: cl f. fit(Xivain, Yorain) > Train model on training data
8 preds « clf.predict(Xiest) > Make predictions on testing data
9 metric < performance metric(yyest, preds) > Compute evaluation metric
10: return metric

11: end function

12: Initialize an empty dictionary opt_params = ()

13: Optimize the objective function using Optuna:

14: study < optuna.create_study(direction = “mazximize”)

15: study.optimize(objective, n_trials=Nya1s, timeout=Tiimeout )

16: trial < study.best_trial

17: opt_params < trial.params > Get optimized model parameters from the best trial

18: return opt_params

Output: opt_params - optimized hyperparameters.

Our method initializes an empty list to store the optimized model parameters (opt_params).

Subsequently, it defines the objective function objective(trial), which assesses the perfor-
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mance of the model with a specified set of hyperparameters. We define the parameters of the
ML model (params), which represent the hyperparameters for optimization. The algorithm
suggests hyperparameters for each parameter in params; then the model is instantiated with
the suggested hyperparameters and trained on the training data (X ain, Ytrain). Predictions
are made on the testing data (Xiest), and a performance metric is calculated based on
actual labels (yiest) and predicted labels (preds). The algorithm returns the performance
metric as an objective value. We create a study object (study) and set the optimiza-
tion direction to“maximize”. The objective function (objective) is optimized by invoking
the study.optimize function with the specified number of trials (Nyas) and the timeout
(Tiimeout ), resulting in the best trial of the study. We then retrieve the optimized model
parameters (opt_params) from the best trial.

Finally, the algorithm returns the optimized model parameters as an output. In sum-
mary, the algorithm quickly finds the best hyperparameters for a ML model by suggesting
that it use Optuna repeatedly and check how well it works on a validation set. Afterward,

it provides the set of hyperparameters that yield the best performance metric.

3.3.5 Experiments and Evaluation

For the experimental environment, we use the setup presented in Section 2.5. We use DS3,
prepared in Subsection 2.5.1, to experimentally evaluate the effectiveness of our approach.
DS3 consists of three datasets: EMBER2017, EMBER2018 and BODMAS datasets, which
have been augmented using the method described in Section 2.4. Based on the MDOB
method described in Section 3.3, we successfully built the Al-powered malware detection

tool. We conducted two scenarios to evaluate MDOB, as detailed below.

e Scenario S1: The focus is on using the EMBER2018 dataset to evaluate our proposed
MDOB method. We consider this dataset to be more challenging than its previous
iteration. We use this scenario to assess the effectiveness of our models and compare

them with other recent methods.

e Scenario S2: We evaluated our proposed MDOB method using the BODMAS dataset.
We consider the BODMAS dataset as an additional benchmark that complements the
EMBER datasets by offering malware samples from a more recent time. BODMAS
dataset also brings in different types of malware and gives us samples with timestamps,
which helps us analyze changes over time and check how well our models handle new
malware threats. This scenario allows us to examine the generalization capability of

our models when applied to newer datasets beyond the EMBER dataset series.

Based on the hyperparameters tuned above, we get a prediction from all models simulta-
neously. After that, we calculate the prediction of the averaging probability from the child
model, and we use the argmax function to identify the label with the highest probability,

thus achieving optimal final results.
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3.3.5.1 S1 Results

Similarly to EMBER2017, we ran the model without hyperparameters and tuned it around
the initial parameters for EMBER2018. Unlike EMBER2017, the initial accuracy could not
be better this time. The increased complexity of EMBER2018 compared to its previous
version partly explains this. We focused on fine-tuning for all models.

For example, Figure 3.5 shows the fine-tuning of the CNN model, using 512 epochs,
a batch size of 64, and a validation split of 10%. The model quickly fits the training
set, with the loss approaching zero and the accuracy nearly reaching 100%. However,
the validation loss fluctuates heavily and increases with more epochs, while the validation
accuracy stabilizes around 97-97.5% without further improvement. This indicates a clear
overfitting, where the model memorizes the training data but does not generalize to unseen
samples. This observation explains why CNN in Figure 3.6 underperforms compared to
boosting models, which are more stable on tabular features. The results highlight that CNN
is not optimal when applied directly to EMBERZ2018 and requires additional strategies such
as regularization, early stopping, or integration of the ensemble to improve generalization.
The accuracy for the XGB model is 97.68%, the CBT model is 97.52%, the GBM model
is 97.89%, the CNN model is 95.90%, and the voting of these models is 97.89%. Finally,
MDOB obtains the accuracy of 98.14%.

Figure 3.6 compares the F1-score of different models on the EMBER2018 dataset using
565 features. The results indicate that boosting-based models achieve high and stable
performance, ranging from 97.5% to 97.9%, with Light GBM slightly outperforming the
others. In contrast, CNN yields the lowest result ( 95.7%), reflecting the limitations of deep
learning architectures when applied directly to tabular features extracted from PE files. In
particular, the ensemble methods further enhance performance: Soft voting reaches about
98.0%, while stacking achieves the highest score at 98.1%. These findings confirm that
the integration of multiple models can take advantage of the complementary strengths of
individual algorithms, mitigate their weaknesses, and ultimately deliver superior accuracy
and robustness for malware detection.

The results also indicate that CNN is less effective in malware detection than other
approaches, which exhibit the miss rate FNR at 4.81%. In contrast, MDOB achieves
the lowest FNR at 2.32%, highlighting the effectiveness of ensemble models in improving
detection accuracy, making it the most reliable method to minimize undetected malware.
Meanwhile, GBM, CBT, and XGB have moderate FNRs ranging from 2.5% to 2.6%,
indicating that they are slightly less effective than MDOB in reducing false negatives.

3.3.5.2 S2 Results

We ran the models on BODMAS without extensive hyperparameter tuning, similar to what
we did with EMBER2018. Compared to EMBER datasets, BODMAS has newer types of

malware and different time patterns, which shows that malware detection is changing.
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Figure 3.6: EMBER2018-based Performance on 565 Features

However, it does not have standard feature definitions and only includes feature vectors
without harmless files because of copyright problems, making it hard to fully reproduce the
results. For this experiment, we used the feature sets selected by SHAP at threshold 0.01,
specifically the 4-feature (intersection) and 165-feature (union) subsets.

The results, summarized in Table 3.6, show a noticeable gap in the model performance
between the minimal feature set (4 features) and the enriched feature set (165 features).
Specifically, with 165 features, the XGB model achieves an accuracy of 99.39%, the CBT
model reaches 99.37%, the GBM model achieves 99.26%, and the CNN model obtains
99.26%. The soft voting ensemble further improves performance to 99.42%, while MDOB
achieves the highest accuracy at 99.46%.

Figure 3.7 presents the Fl-score performance of XGBoost, CatBoost, Light GBM, CNN,
and two ensemble methods on the BODMAS dataset using 165 features. The results

reveal that all models achieve consistently high performance, ranging narrowly from 99.1%
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Table 3.6: Evaluation of Al models based Malware Detection (%)

Learning Method‘ F1 Acc Prec  Sens FAR FNR‘ F1 Acc Prec  Sems FAR FNR

‘ BODMAS (165 features) ‘ EMBER 2018 (565 features)

XGB 99.28 99.39 99.28 99.28 0.61 0.72 | 97.67 97.68 97.97 9737 2.17 2.63
CBT 99.26  99.37 99.29 99.23 0.71 0.77 | 97.52 97.52 97.58 97.46 226 2.54
GBM 99.13  99.26  99.09 99.16 0.74 0.84 | 97.88 97.89 98.34 9742 216 2.58
CNN 99.13  99.26  99.02 99.24 0.76 0.74 | 95.72 9590 95.64 95.19 4.08 4.81

Baseline

Mutual DLM+GBM Voting ‘99.32 99.42  99.34 99.30 0.66 0.70‘ 98.02 97.89 9838 97.65 2.03 2.35

Mutual Voting+Stacking MDOB‘99.37 99.46 99.48 99.26 0.54 0.74 ‘98.13 98.14 98.58 97.68 1.93 2.32

t0 99.3%. Among the base models, XGBoost, CatBoost, and CNN achieve nearly identical
scores, with only marginal differences at the decimal level. LightGBM records a slightly
lower score, though the gap is negligible. Ensemble methods continue to provide incremental
benefits: soft voting outperforms individual models, while stacking achieves the highest
result, approaching 99.4%. These findings suggest that when the feature set is already
well-refined (165 features), the performance differences among individual models diminish.
However, ensemble approaches remain valuable as they exploit the complementary strengths
of different models, yielding an optimal and more stable detection performance.

F1 scores exhibit a similar trend, and MDOB achieves the best F1 scores of 99.37%
(165 features). MDOB greatly reduced the false negative rate (FNR) to 0.74% when using
165 features, showing that the ensemble methods are very effective in improving detection

abilities.

3.3.6 Comparison with SOTAs

The comparison of malware detection implementations between MDOB and SOTA is sum-
marized in Table 3.7. The accuracy of our MDOB method reaches 98.14%, higher than the
accuracy of all the compared methods, such as dualFFNN k-medoids [94], which is 98.02%
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Table 3.7: Comparison of MDOB with SOTA Methods (%)

Method Venue Acc  Prec F1 Sens
EMBER2018
MDOB (our) - 98.14 98.58 98.13 97.68
AutoML [20] Computers & Security 2024  95.80 - 95.80 -
dualFFNN k-medoids [94] Computers & Security 2023  98.02 - - -
Consensus [80] CMC 2023 96.77 — 96.77 —
DL [10] Telecom 2023 95.57 — - -
MLMD [36] CAI 2023 0742 — - -
DNN [59] [JNIS 2022 94.09 90.14 88.66 88.85
BODMAS
MDOB (our) - 99.46 99.48 99.37 99.26
EII-MBS [48] Computers & Security 2022 99.29  98.26 94.23  98.07
MD-ADA [17] Computers & Security 2024  99.29 — 99.13 -
FCG-MFD [45] INCA 2025 99.28  — 9914  —

of accuracy, or AutoML [20], 95.80% of accuracy; it is also higher than the Fl-score of
other compared models; for example, DNN [59] has 88.66% accuracy, and the consensus
[80] has an accuracy of 96.77%. On the BODMAS dataset, our MDOB method achieves
an accuracy of 99.46%, which is higher than all other compared methods using the same
dataset, such as MD-ADA [17] with 99.29%, EII-MBS [48] and FCG-MFD [45] both with
99.28%. Moreover, MDOB maintains the lowest false alarm rate (0.54%) and achieves
the highest Fl-score (99.37%) among all models evaluated. Consequently, the accuracy,
precision, and speed results demonstrate that MDOB is currently the most efficient learning

model.

3.4 Summary

In this chapter, we focus on improving the performance and robustness of intrusion and
malware detection systems through ensemble learning and mutual interaction among ma-
chine learning models. Building on the enhanced datasets developed in Chapter 2, this
chapter addresses the limitations of individual models and proposes a unified framework
that takes advantage of the complementary strengths of both deep learning and modern
boosting algorithms.

The chapter begins by analyzing the challenges faced by conventional classifiers such as
convolutional neural networks (CNNs) and standalone boosting algorithms (e.g., XGBoost,

Light GBM, CatBoost). Although deep learning models are highly effective at extracting
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complex features from raw or structured data, they often suffer from instability and lack
of interpretability, especially under imbalanced or adversarial data conditions. In contrast,
boosting models are generally more stable and interpretable, but are limited in their ability
to recognize highly complex and nonlinear attack patterns.

To overcome these limitations, we introduce a mutual ensemble inference framework
that combines deep learning and boosting via two strategies: soft voting and stacking
meta-learning. In this framework, deep and boost models are trained on the augmented
and balanced datasets from Chapter 2. The soft voting approach aggregates predictions
from all base models to enhance stability and consistency, while stacking employs a meta-
classifier to learn from the outputs of the base models, thereby improving accuracy and
adaptability.

We conduct comprehensive experimental evaluations on multiple benchmark datasets for
both network intrusion detection and static malware detection. The results demonstrate
that the hybrid ensemble approach significantly outperforms both individual model base-
lines and the most advanced current methods, achieving superior accuracy, adaptability
to rare classes, generalization to unseen attacks, and robustness to noise or adversarial
data. The experiments also show that this method increases stability and enhances system
resilience; when one model fails, others may succeed; this is a key strength of the proposed
approach.

These research results have been partially presented in published works, including two
articles in respected journals (VVH-J1, VVH-j3) and two conference papers (VVH-CI,
VVH-C3), highlighting the novel and significant contributions discussed in this chapter.
Specifically, VVH-J1 and VVH-C1 introduce and evaluate the mutual ensemble inference
framework that combines deep and boosting learning to enhance the effectiveness of network
intrusion detection. Meanwhile, VVH-j8 and VVH-CS3 provide a detailed presentation of the
integration of these ensemble methods, as well as performance analysis in malware detection
tasks. In general, the content of these publications demonstrates the originality and scientific
significance of the research, laying the foundation for the deployment of large-scale network

systems discussed in the next chapter.
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Chapter 4

Holistic Large-Scale AI-powered Intrusion
Prevention with Flow Sensing Strategy and

Parallel Ensemble Inference

After proposing methods to balance the dataset and develop detection models in previous
chapters, Chapter 4 shifts its focus to implementing these achievements in practice by de-
signing and deploying an effective intrusion detection and prevention system for large-scale
network environments. At this stage, the emphasis moves from “models and algorithms” to
“system design and real-world application,” where critical strategies such as flow sensing,
high-speed processing methods, rapid response capabilities and sandbox-based malware
analysis play a decisive role in transforming research results into practical value. This
chapter evaluates the overall effectiveness of the entire process, while also providing a
comprehensive perspective on scalability, quick adaptability, and efficient deployment in

today’s real-world scenarios.

4.1 Problem Statement

Although previous chapters have focused on improving the quality of data and models,
real-world deployment of Al-based IDS systems introduces a new dimension of challenges.
In operational environments, timeliness and scalability are critical constraints. Detection
models must not only be accurate, but also be able to make decisions in real time and under
resource constraints [25].

In the context of increasingly complex network environments, the demand for proactive
defense against cyber threats has driven the development of Al-based intrusion detection
and prevention systems (IDS/IPS). However, deploying such systems in large-scale real-
world networks presents unique challenges in terms of performance, latency, scalability,
and resilience against sophisticated attack techniques.

Traditional intrusion detection approaches including signature-based, rule-based, and
even standalone deep learning models have inherent limitations. Signature-based methods
typically only detect known threats and struggle to adapt to novel or previously unseen
attacks. In contrast, modern Al models, especially deep learning, show promise for anomaly
and zero-day attack detection but require significant computational resources, making real-
time processing difficult in large-bandwidth networks [17]. Furthermore, many current

systems assume a static data pipeline and lack the ability to adapt in real time, leading to
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poor performance when confronted with dynamic traffic patterns or evolving stealth attack
vectors.

Another challenge is the gap between the performance of the offline model and the
real-world defensive capability after deployment. Evasive, adversarial attacks or previously
unseen anomalous traffic can cause many Al models to become unstable or even ineffective
compared to their performance in controlled laboratory environments.

In particular, proactive prevention differs fundamentally from detection alone by requir-
ing extremely low-latency decision-making, often in user space to maintain both accuracy
and scalability. This requires system architectures that are lightweight, highly parallelized,
and capable of context-sensitive flow sensing, so that computational resources are prioritized
for high-risk flows while avoiding unnecessary overhead in regular traffic.

Although several approaches have attempted to address these issues, most current solu-
tions suffer from trade-offs: sacrificing accuracy for speed, focusing solely on detection while
overlooking proactive defense, or failing to optimize for large-scale, real-world deployments.
Very few solutions simultaneously achieve the goals of accuracy, real-time responsiveness,
scalability, resilience, and adaptability.

From this practical perspective, the central research problem can be stated as fol-
lows: How can we design an Al-powered intrusion prevention system that is
operationally viable, ensuring high-throughput real-time processing, robust
detection accuracy, scalability, and resilience to sophisticated attacks in large-
scale network environments?

To address this question, this dissertation focuses on proposing a proactive Al-based

defense architecture that integrates multiple key components:
e Integration of flow sensing strategies to dynamically determine inference needs.

e Real-time system evaluation under emulated large-scale traffic with emphasis on la-

tency, accuracy, and deployment feasibility.

e The design of NetIPS: a user-space intrusion prevention architecture with parallel

inference across core models.

The goal is to build a holistic defense system ready for deployment in large-scale net-
works, providing high performance, reliability, and strong adaptability. To validate the
effectiveness of the proposed solution, this research conducts extensive experiments on
large-scale datasets and realistic network simulation environments, benchmarking latency,

accuracy, scalability, and overall defensive efficacy against current state-of-the-art methods.
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4.2 Proposed Holistic Intrusion Detection Framework

4.2.1 Approach Direction

In reality, deploying an IDPS system on a network in inline mode presents several obstacles.
Thus, inspecting all traffic in detail to detect anomalies is impossible, particularly for
ML/DL methods and large-scale network traffic with a throughput of 10Gbps or even
100Gbps. Our comprehensive intrusion detection approach uses deep Al-powered analysis
to identify anomalous behavior and signatures of previous intrusions, namely APELID, as
illustrated in Figure 4.1 and Algorithm 4.1. To ensure high-throughput network traffic,
this method combines three core inspectors based on the shallow, Al-powered deep analysis
and Sandbox. The shallow analysis uses a ruleset based on known intrusion signatures to
inspect all traffic flows on the network. However, the Al-powered deep analysis focuses
only on flows that do not match any rule in the current IDPS ruleset. Meawhile Sandbox
focuses to detect malware file that transmit between networks. To increase resilience when
conducting deep analysis in large-scale networks, our approach is to control and trigger the
Al-Powered deep analysis regularly using a flow-sensing mechanism that samples the traffic
flows depending on two factors: sampling cycle and duration.

The traffic assessment is conducted as described below. First, network traffic is captured
in both the receiving and transmitting directions, and then decoding is performed. Next, we
apply rule-based detection to network traffic to determine known attacks. Each rule has a
unique pattern or signature that identifies malicious network traffic. Network traffic will be
analyzed and granted four actions based on the protocol: (i) drop the packet; (ii) reject the
packet (discard the packet and notify the source that sent the packet); (iii) alert and allow
to pass the packet; and (iv) pass without warning. The remaining case, denoted by ‘Other’,
corresponds to network traffic flows that do not match rules. Our primary objective in deep
inspection is to identify anomalous network traffic behavior using Al-powered analysis.

The Signature-Based Detector and the flow-sensing strategy are deployed in a tra-
ditional IDPS, such as Suricata, Snort, or Zeek. Traditional IDPS has to be fine-tuned
in order to be able to capture “Other” flows regularly by using the global setting variable
“Sensing” to perform Al-powered analysis in DeepAnalyzer.

For large-scale networks, we propose a flow-sensing mechanism that periodically sam-
ples network traffic to prevent analysis bottlenecks. Our concept of periodic sampling is
described as follows: for each cycle T', capture all flows corresponding to the ‘Other’ instance
in a 0 interval. Those flows are typically represented by the ‘PCAP’ format and will be
sent to DeepAnalyzer within a interprocess communication (IPC) mechanism by using a
Unix socket. Our flow-sensing mechanism is described in more detail in Subsection 4.2.3.

The extraction of network traffic flows described above does not affect the processing of
network traffic flows corresponding to the Other case. It indicates that the deep analysis

process does not obstruct or discard network traffic. However, Al-powered deep analysis
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Figure 4.1: Architecture of Holistic Intrusion Detection

concentrates on anomaly detection and updating the IDPS ruleset with new signatures to
prevent network attacks. In addition, the alert provides information for the administrator
to have a plan for early network attack mitigation.

Moreover, to improve the ability to detect malicious files transferred over the network,
our proposed APELID solution is integrated with a MalwareAnalyzer based on a sandbox
approach as illustrated in Figure 4.1. The MalwareAnalyzer is assumed to perform both
static and dynamic file analysis to identify malware threats. Our method for detecting
malicious files transmitted by the network is as follows. IDPS will initially acquire network-
transmitted files and store them in the FileStore folder. Then, we construct a Python
program that periodically examines the folder FileStore for new files. Therefore, all new

files are automatically submitted to MalwareAnalyzer for sandbox-based malware analysis.

4.2.2 Parallel Ensemble Inference-based Intrusion Detection

Two ideas motivated our intrusion detection method: the ensemble learning approach and
parallel computing. The first proposal tries to improve the quality of intrusion detection,
while the second helps to reduce the latency of intrusion detection. As a result, the intrusion
detection approach suggested in our study is known as PELID, which stands for “Parallel
Ensemble Learning for Intrusion Detection.”

As described in [40, 72, 56, 110], the most effective new Al models for intrusion detection
are DNN, XGB, CBT, GBM, and BME. In addition, as illustrated in Table 1.2, the accuracy
and Fl-score results for intrusion detection of these models currently exceeded 98%. Thus,
it predominantly affects our selection of these models for our PELID ensemble.

In PELID, the combination of numerous Al models is performed by soft-voting method.

However, the effect of each individual model is regulated by a weighted score (w; € (0,1) )
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Algorithm 4.1 Holistic intrusion Detection by flow sensing strategy and deep analysis
Input: f - Traffic In Flow, S - Signature Set, Sensing - perform Al-powered deep analysis

or not, F' - Files that transfer between network.
Output: f,msg,S - (Traffic Out Flow; Alert Message; Updated Signature Set)

1: action < RuleBasedDetector(f,S)

2: J0COsy + 0

3: if action = Drop/Reject then > Drop/Reject flow due of a detected critical attack

4 Drop/Reject(f)

5: msg <" Critical Attack’

6 return (none, msg, S)

7. else if action = Alert then > Generate an alert

8 msg <" Alert_based_on_Signature’

9: else if action = Pass then > Stop further inspection of the flow

10: msg < None

11: else if Sensing = True then > f does not match any rules, then Al-powered deep
analysis is triggered by the sensing mechanism

12: (MSGdeeps 10Ceep) — DeepAnalyzer(f) > Inspect F' deeply by PELID and return a
message and new [oC' if an intrusion attack is detected.

13: I0Cse; <= 10C et U I0C jeep > Update ToC,.; with new indication of compromise
T0C jeep

14: end if

15: for eacht € F' do

16: (msgy, [oC}) < MalwareAnalyzer(t) > Analysis ¢ deeply by Sandbox return a
message and new [oC; if an malware file is detected.

17: 10C; <+ 10C,; U ToC; > Update ToC,; with new indication of compromise IoC;

18: end for

19: S+ SUIoC,y > Update S with new indication of compromise IoC;

20: return (f,msg,S)

on the overall PELID model. In general, with n Al models, the total sum of these scores
must be 1: >  w; = 1. All of these scores will be determined experimentally in order to
identify the optimal combination of a variety of AI models. Consequently, Algorithm 4.2
shows our PELID algorithm.

In Algorithm 4.2, the network traffic flow is first captured, extracted, and modeled by
a feature vector F. In this step, the CICFlowMeter tool [97] can be used and return
a vector of 83 features for each flow. Next, F' will be cleaned by removing unused fea-
tures and normalizing the rest. With CICFlowMeter explicitly, this step retains only 73
features by eliminating [FlowID, SrcIP, SrcPort, Label, BwdPSH- Flags, BwdURGFlags,
FwdByts/bAvg, FwdPkts/bAvg, FwdBlkRateAvg, BwdByts/bAvg]. Among them, two fea-

tures [DstPort, Protocol] are used as categorical variables and the rest 71 are considered
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Algorithm 4.2 PELID: Parallel Ensemble Learning-based Intrusion Detection
Model: XGB, GBM, CBT, BME, DNN - XGB, GBM, CBT, BME and DNN trained

model, and their ensemble weight w; where Z?Zl w; = 1.
Input: f - traffic flow.

Output: (msg, R) - (alert messages; new generated rules)

1: R« 0

2: I < Featurize(f) > Extract features of traffic flow f.
3: Fin <— Normalize(F) > Perform the feature engineering: remove unused features and

normalize the rest.

4: Cats < [DstPort, Protocol] > Categorical variables
5: Conts < Fin \ Cats > Continuous variables
6: Perform in parallel five processes P1, P2, P3, P4, P5:

7. P1: pXGB < XGB.predict(Cats,Conts) > Perform the prediction using XGB.
8: P2: pGBM < GBM.predict(Cats,Conts) > Perform the prediction using GBM.
9: P3: pCBT « CBT.predict(Cats, Conts) > Perform the prediction using C' BT

10: P4: pBMFE < BM E.predict(Cats, Conts) > Perform the prediction using BME.

11: P5: pDNN <« DN N.predict(Cats, Conts) > Perform the prediction using DN N.

12: Wait P1, P2, P3, P4, P5 finished.

13: scores < (pXGB * wy + pGBM % wy + pCBT x ws + pBME % wy + pDN N * ws)

14: FC < scores.argmazx(azis = 1) > Get the flow predicted label.

15: if F'C!' =0 then > Classified as network attacks

16: msg < Alert(FC, f) > Generate an alert by using metadata from the flow f; set
alert category being as predicted label.

17: R < RuleGenerator(FC, f) > Generate a new signature based on its indicator of
compromise.

18: end if

19: return msg; R

continuous variables. It should be noted that all of the above steps are also used to prepare
the training set before training each AI model. Moreover, all AT models have to be trained
by using AWGAN augmented datasets before using PELID, which is present in Section 2.4.

Returning to the PELID algorithm, the normalized vectors are then fed into Al models
to run the prediction step. Here, in order to enhance the speed of intrusion detection,
Al-based predictions are performed in parallel. Concretely, in PELID, five P1, P2, P3,
P4, and P5 processes are run simultaneously to compute the probability of intrusion. In
the event that network activities under an intrusion attack are identified, PELID will send
an alert message to the administrator and generate rules in the form of an indicator of

compromise (IoC) to update the IDPS’s signature database.
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4.2.3 Strategy for Al-powered real-time intrusion detection

When the Al-powered model for detecting intrusions is implemented, a large-scale traffic
network, such as an optical one, experiences significant network latency or bottleneck
congestion. We employ a rule-based engine to detect and prevent common network attacks.
The APELID will then concentrate on network traffic flows missed by the current rules-
based engine to decrease analysis time. It operates in two phases, as described in the
following sections:

Initially, a well-known IDPS, such as Suricata or Snort, is used to capture network
traffic in both the receiving and transmitting directions. Next, we use a rules-based engine
to analyze network traffic in order to detect and prevent known network attacks: drop,
reject, alert, and pass. APELID performing an in-depth analysis will identify abnormal
network traffic behavior for the remaining case, denoted by ‘Other.’

Second, during the in-depth analysis phase, the IDPS is modified to capture flows corre-
sponding to ‘Other.” This flow data will be then analyzed by the PELID method to identify
one of the twelve labels: Benign, DoS-Slow HTTPTest, BruteForce-Web, BruteForce-
XSS, DDOS-LOIC -UDP, DDoS-HOIC, DoS -Hulk, DoS-GoldenEye, Bot, DoS -Slowloris,
Infiltration, SQL-Injection.

For large-scale network traffic, the deep analysis certainly causes the stuck of IDPS.
Therefore, we propose an efficient strategy to sense the traffic flows. Thus, we control
the periodic deep analysis sampling strategy using 6 variables: DI Cycle, DIC _Min,
DIC _Maz, and DI Window, DIW _Min, DIW _Max. These parameters are all natural

numbers with units of seconds, and their meanings are as follows:

e DI Cycle: is the sampling cycle T" for deep analysis. Suppose that this parameter has
a value equal to 0, and the IDPS system will include a deep traffic analysis with a
random cycle in the range of DIC _Min, DIC_Max. These default parameters are 60,
30, and 300 seconds, respectively.

e DI Window: is the window size for deep analysis. If this parameter is 0, the system
will capture the flows for deep analysis in a random window size from DIW _Min to
DIW _Mazx. The default value of DI_Window is 10 seconds, and DIW _Min, DIW _Max

is 1 and 30 seconds, respectively.

In IDPS, these parameters are selected and configured. The sampling cycle and duration
will determine the performance of IDPS for high-volume network traffic (throughput of
10Gbps or more). If DI _Cycle is tiny or big DI _Window, DeepAnalyzer must make more
predictions. It leads to increased latency and possibly causes bottlenecks. Consequently,
these parameters are also chosen based on the context of network throughput and IDPS’s
computing capacity.

In light of these findings, Figure 4.1 illustrates the system architecture necessary to inte-
grate our APELID into an inline IDPS. Note that if the DeepAnalyzer detects anomalous

network behavior, the IDPS will generate an indicator of compromise (IoC) and add it
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Algorithm 4.3 Malware Detection
Input: F' - New files transferred in network and accumulated in F'ileStore folder.

Output: (msg, R) - (Alert Message, New Rules generated based malware detected files).

1: Ready < Wait_Sandbox_Ready > Blocking-function until Sandbox is ready.

2: IngestFiles(F) > Send F' in the FileStore folder to Sandbox

3: score = HybridAnalyzer(F') > Determine the overall score of both static and dynamic
analysis.

4: if score > 7 then > Critical suspicious file

5: R < RuleGenerator(F) > Update the rule to block connection.

6: msg < ‘Detected_Malware_Files'

7 return msg, R

8: end if

to the signature-based ruleset of the IDPS. Consequently, it notifies the administrator of

current traffic flows and thwarts future network attacks of a similar nature.

4.2.4 Hunting Malware by Sandbox Approach

In order to improve the capability to detect malicious files transferred over the network,
our proposed APELID solution is integrated with a MalwareAnalyzer based on a sandbox
approach, as illustrated in Figure 4.1. Algorithm 4.3 illustrates our strategy to analyze and
identify this malware file. This will further enrich the IoC rule set based on domains, hosts,
and IP-Ports for a more proactive approach to detecting and preventing malware through
the IDPS system. For example, in cases where the IDPS cannot detect a malware file, the
MalwareAnalyzer can identify it and provide IoC indicators to complement the IDPS’s ToC
ruleset, thereby enabling detection and prevention in similar instances in the future. Thus,
it is assumed to perform both static and dynamic file analysis to identify malware threats.
Our method for detecting malicious files transmitted by the network is as follows. IDPS will
initially acquire network-transmitted files and store them in the FileStore folder. Then, we
construct a Python program that periodically examines the folder FileStore for new files.
Therefore, all new files are automatically submitted to MalwareAnalyzer for sandbox-based
malware analysis.

MalwareAnalyzer enables the deployment of a well-known sandbox, such as Cuckoo,
with two essential entities: the Host and the Agent. Each agent can be launched on a
virtual machine that has been quarantined (Analysis VM). The analysis VM will execute
the file and record its complete behavior. For further investigation, it can also identify
malware-associated behaviors, such as extracted artifacts, registry modifications, dropped
files, related processes, DLL library files in use, and network activity data.

MalwareAnalyzer also considers statistical analysis utilizing the Yara utility. Here, we
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investigate the file signatures, hashes, strings, and other data related to the suspicious file.
MalwareAnalyzer integrates with several additional malware analyzers, including Virus
Total.

Lastly, MalwareAnalyzer combines the static and dynamic analysis results and gives
the analysis report with a severity score of 0 to 10. If the severity score exceeds 7 in our
proposal, MalwareAnalyzer will send an alert to the administrator and collect file-related
information, such as the incoming IP address, domain, URL, etc. These data permit
the development of a new IoC-based rule and its incorporation into the IDPS signatures
database, thus preventing similar future threats. Consider a scenario in which the severity
score is less than 7, such as anti-executable malicious code on analysis virtual machines.
In this case, the results of the simulator analysis will also be sent to the administrator
to provide additional information. In some cases, human reverse engineering analysis is
required to assess the actual malware risk.

In particular, MalwareAnalyzer is not designed to prevent malware files in real time.
However, our method enables us to proactively enhance and improve the IDPS IoC and

signature database in response to future comparable threats.

4.3 Experiments and Evaluation

To demonstrate the performance of our method, we conducted a comprehensive experiment

to answer the following research questions:

1. RQ1: Does combining multiple Al models of PELID, both traditional ML and DL,
allow enhancing the performance of network intrusion detection and reducing analysis

time?

2. RQ2: When deploying an IDPS inline system in an intranet with large-scale network
traffic, is it fast enough to conduct a deep analysis of network flows for intrusion
detection with the Al model generated by the APELID method to ensure that network

flows are handled in real time?

3. RQ3: Is it possible to implement malware file detection in the inline IDPS system
combined with deep analysis based on the AT model?

Our rigorous experiments were conducted to answer the above research questions. The
following sections, in turn, detail the results we obtained while experimenting and evaluating
our APELID method. We use DS2, prepared in Subsection 2.5.1, to experimentally evaluate
the effectiveness of our approach. DS2 consists of two datasets: CSE-CIC-IDS2018 and
NSL-KDD, both of which have been augmented using the method described in Subsec-
tion 2.3.2.
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Table 4.1: Confusion Matrix of CSE-CIC-IDS2018-based PELID
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Table 4.2: Confusion Matrix of NSL-KDD-based PELID

DoS

Probe

R2L

True Label

Benign

Predicted Label

4.3.1 Experimental Results

For the experimental environment, we use the setup presented in Section 2.5. We im-
plemented the AGWAN and PELID algorithm and deployed them in an inline IDPS
to validate the four research questions mentioned above. Therefore, three scenarios are
proposed to evaluate our methods: CSE-CIC-IDS2018-based experiments, NSL-KDD-based
experiments, and a practical model for hunting malware in an IDPS using the sandbox
method.

The experiment process for both two datasets is the same. First, the augmented training
set is used to train five individual AI models of PELID. Then, the testing set is used to
assess not just the performance of the five AT models, but also the ensemble model PELID.
In addition, the experiment identifies all the evaluation metrics and measures the time
required to analyze each traffic flow using PELID-based intrusion detection. To avoid the
impact of other processes on the testing server, the time consumption of PELID is the

average value obtained from six separate prediction runs. The results obtained will be
summarized and evaluated in the next subsection.
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Table 4.3: Evaluation of Al models based PELID (%)

, CSE-CIC-IDS2018 |
Metric

XGB CBT GBM BME DNN PELID‘ XGB CBT GBM BME DNN PELID

NSL-KDD

F1 99.77 99.92 99.95 99.77 97.75 99.99 | 9948 99.21 99.48 99.48 98.00 99.63
Acc 99.76  99.92 99.96 99.98 97.54 99.99 | 9949 99.22 99.56 99.43 98.07 99.65
Prec 99.83 99.93 99.96 99.98 98.20 99.99 | 99.49 99.21 99.49 99.41 98.03 99.65
Rec 99.76  99.92 99.96 99.98 97.54 99.99 | 99.49 99.22 99.49 99.43 98.07 99.65
FPR 0 0 0.03 0 0.13 0 0.67 127 0.63 0.77 1.22 0.37
FNR 0 0.01 0 0 1.37 0 037 039 030 032 226 0.34
AUC 100 100 99.99 99.99 98.69 100 99.99 99.98 99.99 99.89 99.85 99.99

4.3.1.1 CSE-CIC-IDS2018-based Results

These experiments focus on evaluating our APELID method utilizing the CSE-CIC-IDS2018
dataset, augmented by CSE-CIC-IDS2018 by AWGAN, to train and evaluate Al models. In
this scenario, we trained all five specialized models and incorporated them into the PELID
model based on the GPU computing infrastructure mentioned above. After training, the
CSE-CIC-IDS2018 test set is used to evaluate both the five single models and the ensemble
model according to the five evaluation metrics. The detailed results of the CSE-CIC-
IDS2018 experiment are illustrated in the first part of Table 4.3 and the confusion matrix
shown in Table 4.1. In which, for the order of the labels from left to right in the predicted
label, they correspond to the order of the true labels from top to bottom.

All five individual models evaluated in this study achieved an Fl-score of 99.77% or
above, indicating excellent performance. This demonstrates the excellent efficiency gains
in intrusion detection made possible by data augmentation using the AWGAN algorithm.

These experiment results show that 1/17 SQL — Injection attacks were identified as the
BruteForce—Web, 3/17 SQL — Injection attacks are denoted as the BruteForce — XSS,
1/17 SQL — Injection attacks are defined as the In filtration, 1/6,000 DoS — GoldenEye
attacks were identified as the DoS — Slowloris. All attacks flow (in 42,635 total attacks)
are detected by the PELID. There are no false-positive in intrusion detection. In general,
the F1 score for PELID is 99.99% and its value is the same for other metrics of Acc, Prec,
and Rec.

4.3.1.2 NSL-KDD-based Results

Similar to the previous experiments with CSE-CIC-IDS2018, we also evaluate the APELID
proposed method with the NSL-KDD dataset. However, NSL-KDD contains four classes
and 41 features. ‘Duration’ was omitted from this dataset since it was deemed unnecessary
among those attributes. The remaining 38 features are considered continuous variables

in the DNN model, while two features, “protocol_type” and “service,” are employed as
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Database

Mail

Figure 4.2: Malware Hunting Scenario

categorical variables. We train all five individual models with the NSL-KDD’s augmented
training set, just like we did with DS1. Both the five individual models and our PELID
ensemble model are then evaluated by the NSL-KDD test set. The second part of Table 4.3
shows the experimental results by using NSL-KDD dataset, and Table 4.2 presents the
PELID model’s confusion matrix. In which, for the labels of the predicted label, it is
similar to the confusion matrix of CSE-CIC-IDS2018 dataset.

The experimental findings shown in this scenario demonstrate the efficacy of individual
models in intrusion detection, with F1 values of 98% or higher. In particular, we can see
that the AWGAN algorithm has greatly improved the quality of the training data set by
confirming that all of the AUC measurements are more than 99.85%.

For our PELID method, its confusion matrix illustrated in Table 4.2 shows that the FNR
is 0.34%: total 30 network attacks (including 16 Probe, 6 R2L and 8 U2R) are not detected
by the PELID, and the FPR is 0.37%: 22 Benign flows are considered as intrusions.

4.3.1.3 Malware Hunting Results

This experiment scenario is designed to assess the sandbox-based malware hunting of
APELID method. Here, we utilize experimental data consisting of 80 benign and 20
malicious files. The benign files consist of Windows system software files obtained from a
newly installed Windows virtual machine and downloaded from reputable Internet sources.
The experimental study utilized downloaded malware files from public sources such as
https://bazaar.abuse.ch/ and https://virustotal.com/.

It is anticipated that the answer to our RQ3 will be a partial and temporary “YES”
because it can use dynamic analysis to detect malware behavior. It provides proof of concept
through the experiment that follows. To evaluate the intrusion detection capabilities of
sandbox analysis, we conducted experiments on a host system equipped with Ubuntu 20.04
LTS, an Intel i7 CPU clocked at 2.3 GHz, and 8 GB of RAM.

This scenario includes two completely separate networks: DMZ Network (including Web
server (HTTP and FTP), Mail Server (SNMP), and Attacks-Network), shown as Figure 4.2.
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Table 4.4: Malware Hunting Results.

N Malware Type Hash VT APELID
1 QuasarRAT exe  832ab3a898d188426d3541e1533b55f9  56/68 Yes
2 Loki xlsx  bb6aec60c3bed724{7980a659206531a  29/58  Yes
3 STRRAT Jar  2199150e7d79d0e831cda314c7ce6t56  28/62  Yes
4 AsynRAT doc  da6419e4d4e4528990898bcfdaa85e01  32/60 Yes
5  SnakeKeylogger .exe  715b0f6390bad387a4155¢1d59a3669¢  49/69  Yes
6  AgentTesla exe  5ch90fch32aedecl16532aa857eec28b5  40/66  Yes
7 OskiStealer xlsx  6a9203346218dded19d0a8aldee24023 20/59 Yes
8  NanoCore exe  4bael8ac4a73ff38{7ed718365e6c2b2  41/67 Yes
9  DanaBot exe  bf4731a4ef7d1484893213caaf6a6685  42/69 Yes
10 DCRAT exe  ea800644b9dfd027807447fdd98241aa  50/68 Yes
11 YellowCockatoo Al df7b2ece343c52df774d72e12ea09009  51/69  Yes
12 RemoteManipulator .exe  4c5649e9b9a2d9997ac2600a804e0aeb  41/68 Yes
13 Pony .exe  ab468abb5cd9470c0895097efa2a687f  63/71 Yes
14 Stealc exe  cea30f806e644cebed8399eefaldddedl 47/71  Yes
15 njRat exe  b17414d6949c2e¢013del4fdc268cfc89  65/71  Yes
16 RedLineStealer exe  8a61e10948¢23a9a5¢353d28b8738490 35/71  Yes
17 Guildma zip  8a61e10948¢23a9a5¢353d28b8738490  35/71  Yes
18  Gorzi Jjs 1df2e7a13459223b2cc55b93744add77  24/71  Yes
19 DarkTortilla exe  1¢354a83f81063dc75612a9a7bd51225  54/71  Yes
20 VectorStealer xlsx  5b47098al7ecd534del5df03b12beach  40/71  Yes

We used 100 files, including 80 normal and 20 malware, to send to the DMZ Network and
to upload as administrator to the sandbox.

The IDPS automatically captured files transmitted between networks that used an
unencrypted protocol such as FTP or HT'TP. We wrote a Python tool to automatically check
and send the files to the Sandbox-based analysis for malware hunting. We compared the
experimental results with Virus Total (VT), shown in Table 4.4, indicating that our custom
sandbox can detect common file types, such as .exe, .dll, and .jar. It demonstrates that we
can use the sandbox to detect malware file transfer between networks and proactively hunt
malware for suspicious files. Therefore, these results consolidate the affirmation of RQ3 by

using sandbox-based dynamic analysis of APELID.

4.3.2 Evaluation

This subsection aims to analyze the experimental results in order to respond to the four
research questions specified at the beginning of Section 2.5. We focus on evaluating the

performance of both the WGAN algorithm for improving the quality of the training set and
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the PELID method in terms of intrusion detection.

4.3.2.1 Efficacy of PELID in Intrusion Detection

With the data augmentation algorithm AWGAN and the ensemble learning method PELID,
APELID achieves the outstanding performance of intrusion detection: 99.99% for Accuracy,
Precision, F1-score, and Recall for the CSE-CIC-IDS2018 dataset. Moreover, for the NLS-
KDD dataset, these evaluation metrics also are excellent values of 99.65% for all. Table 4.3
also shows that the AUC of all five single models is close to 100% for both datasets.
In particular, the AUC of the PELID model gives 100% results with CSE-CIC-IDS2018
and 99.99% with NSL-KDD. These two values clearly demonstrate the ideal classification
efficiency of the PELID model and basically allow it to handle the problem of data imbalance
in the classes.

Compared with individual AI models, as illustrated in Table 4.3, it is clear that PELID
gives outstanding F1 results from 0.04% (with the GBM model) to 2.24% (with DNN) with
CSE-CIC-IDS2018 dataset, from 0.17% (with XGB, GBM, and BME) to 1.63% (with DNN)
with NSL-KDD dataset. In addition, both FPR and FNR rates are lower than that of all five
models DNN, XGB, CBT, GBM, and BME. These results privilege us to respond to RQ1:
combining multiple AI models of PELID allow for improved network intrusion detection.
With a very high F1 and both FPR and FNR less than 0.37%, PELID can detect unknown
ntrusion attacks. In addition, the combination of five individual AI models in PELID will
also increase its resilience to adversarial attacks. In addition, the PELID model trained by
CSE-CIC-IDS2018 has nearly perfect intrusion detection performance: 99.99% F1l-score,
100% AUC, and both zero FPR and FNR. Therefore, this model is selected for integration

into our IDPS in order to improve the detection efficacy of eleven types of intrusions.

4.3.2.2 Efficacy of PELID in Time Consumption

By performing the individual AI models in parallel, PELID theoretically permits to reduce
the execution time. Our experiments enable us to demonstrate it conclusively.

Figure 4.3 shows that the average time the PELID prediction of 14,703 flows in the
NSL-KDD testing set from six different runnings is 251.81ms. Meanwhile, PELID needs an
average of 950.48ms from six runnings for analyzing 42, 635 flows in the CSE-CIC-IDS2018
testing set. Therefore, the average time to investigate one flow of the PELID is 17.13 ps and
22.29 s in NSL-KDD and CSE-CIC-IDS2018, respectively. These experiments also indicate
that the PELID-based analysis of NSL-KDD is shorter than CSE-CIC-IDS2018. It comes
from the fact that the NSL-KDD has fewer features and labels than CSE-CIC-IDS2018:
40/71 and 4/12, respectively.

The time consumption of PELID with CSE-CIC-IDS2018 and NSL-KDD can be used to
determine the throughput of network traffics. Based on Figure 4.3, the PELID-based deep
analysis can perform 44,863 flows/s for the model trained by CSE-CIC-IDS2018 and 58,377
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Figure 4.3: Comparing time consumption (milliseconds) between parallel and sequential
processing of PELID. ‘Baseline’ illustrates the average execution time of five individual Al

models.

flows/s for the model trained by NSL-KDD. By using notions of “mouse” and “elephant”
flows of Alvarez-Horcajo et al. [12], we constate that the PELID can analyze the network
throughput of 44,863 x 10K B ~ 438M B/s ~ 3.42Gps or 58,377 * 10K B ~ 570M B/s ~
4.45Gbps for mouse flows (less than 10 KB/flow), respectively CSE-CIC-IDS2018 or NSL-
KDD-based model. For elephant flows (more than 10 MB), PELID can reach up to
44,863 « 10M B ~ 448,630M B/s = 3,504Gps or 58,377 * 10M B ~ 583,77T0MB/s =
4, 560Gbps, respectively CSE-CIC-IDS2018 or NSL-KDD-based model. Therefore, PELID-
based intrusion etection can be performed in large-scale networks. Consequently, RQ2 has
been resolved by all these experimental results.

The experiments in Table 4.3 show that the prediction in the CSE-CIC-IDS2018-based
PELID has higher precision, precision, and F1 score than in NSL-KDD-based PELID.
Therefore, we build an inline IDPS based on the Suricata solution and integrate the PELID
model trained by the CSE-CIC-IDS2018 dataset. It is presently successfully deployed in
inline mode to detect and prevent intrusions on our university’s 10 Gbps large-scale network.
It also demonstrated that the amount of time the PELID model requires to analyze a
network traffic flow in parallel is fast enough to qualify as real-time in practice. Note that
the open-source Cuckoo sandbox is also incorporated into our IDPS to hunt for malware

and contribute more to RQ3 responses.
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Table 4.5: Comparison of APELID with SOTA Methods (%)

Method Acc Prec F1 Rec

CSE-CIC-IDS2018

APELID (our) 99.99 99.99 99.99 99.99
MMM-RF [47] 99.98  — - -

GAN+RF [62] 99.83 98.68 95.04 92.76
KNN-MQBHOA [36]  99.78 99.56 99.65 99.87
HDLNIDS [87] 98.90 98.63 99.03 99.14
CNN [75] 08.17 95.00 94.00 95.00
AUE [114] 97.90 98.00 98.00 98.00
miniVGGNet [68] 96.99 97.46 97.04 96.97

NSL-KDD

APELID (our) 99.65 99.65 99.63 99.65
KNN-MQBHOA [36]  99.00 99.00 97.00 98.00
FFO-PNN [85] 98.99 96.97 96.97 96.97
DLNID [34] 90.73 86.38 89.65 93.17

GMM-WGAN-IDS [26] 86.59 88.55 86.88 86.59
Adaptive-Ensemble [35] 85.20 86.50 86.50 85.20
CAFE-CNN [98] 83.34 85.35 82.60 83.44

4.3.3 Comparison with SOTAs

The experimental findings of APELID are compared with those of other SOTA meth-
ods utilizing the same well-known datasets in order to evaluate our proposed approach.
The comparison findings, which were reported directly from their published papers, are
illustrated in Table 4.5. Note that these metrics are the macro average for the multi-
label classification. Due to the lack of confusion matrix in most SOTA works, we cannot
determine the FPR or FNR metric. However, the FNR, which can be derived from the True
Positive Rate (TPR) or the Recall metric, can be used to compare the number of missing
intrusion flows across various methods. It can be calculated using the following formula:
FNR=1—-TPR =1 — Recall.

Table 4.5 demonstrates that APELID outperforms SOTA and achieves the greatest
scores across all evaluation metrics. APELID achieves an Fl-score of 99.99% and 99.65%,
respectively, which is higher than all SOTA models based on CSE-CIC-IDS2018 and NSL-
KDD. In addition, APELID achieves an outstanding true positive rate (or Recall) of 99.65%
and an exceptional false negative rate (FNR) of 0.00% and 0.34% for these well-known

datasets (as shown in Table 4.3). As a result, these comparisons enable us to validate the
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Figure 4.4: APELID-based NetIPS Architecture

efficacy of our APELID method and contribute more to answering RQ1.

4.4 NetIPS: Deployment of Network Intrusion Detec-

tion and Prevention

Based on the experimental findings and preceding explanation, it is evident that the PELID
model may be effectively utilized to conduct a more comprehensive analysis of network
traffic flows. Within this section, we provide in detail the practical implementation of the
APELID method, utilizing the PELID-based deep analysis specifically designed to detect
and prevent intrusions in large-scale networks effectively. The following subsections further
outline the techniques employed in NetIPS, such as hypermatching and userspace-based

analysis, to enhance the efficiency of deep analysis of network traffic flows.

4.4.1 Deployment Model

We built an IDPS named NetIPS to prove the ability of APELID in practice. Its ar-
chitecture is illustrated in Figure 4.4 and divided into three layers. The lower layer is
the network hardware, including SmartNIC (network accelerator) and traditional network
interfaces, used to analyze traffic and manage the NetIPS. The middle layer, Kernel Space,
controls the standard network hardware interfaces. In the top layer, User Space, we deploy
the essential components of NetIPS: the customized Suricata as a Rule-based Detector and
Deeplnspector to perform the APELID-based intrusion detection.

The configuration of the appliance used in our real deployment is the same as the
experimental environment described in Section 2.5. In this deployment model, Suricata

v6.0.3 is used as the Rule-based Detector. However, in order to further analyze large-scale
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network flows, we have customized Suricata to implement the flow sensing strategy for
Al-powered deep analysis, as mentioned in Subsection 4.2.3.

For the DeepAnalyzer, the PELID model trained by CSE-CIC-IDS2018 is used for Al-
powered intrusion detection. In combination with the flow sensing strategy implemented
in the customized Suricata, our APELID method allows for efficient and effective real-time

large-scale network traffic analysis for intrusion detection.

4.4.2 Hypermatching for Signature-based Detector

In the proposed system architecture, shown as Figure 4.4, when the DPDK (Data Plane
Development Kit!) library packets are passed to the Decoder, they are decoded using a
packet decoder and sent to the Detectors. In the Rule-based Detector, the Hyperscan
technique is utilized to enhance the efficacy of the ruleset matching procedure. It matches
more effectively than other methods (such as Aho-Corasick, Boyer-Moore).

To increase the efficacy of pattern matching, Hyperscan divides a regex pattern into
multiple components and coordinates the order of component matching using fast string
matching. It would reduce the number of wasteful CPU cycles caused by redundant
matching, thereby improving performance. In addition, it provides multi-string matching
and single finite automaton matching algorithms that take advantage of SIMD operations
[106].

Each Detector module utilizes the Hyperscan library when analyzing and detecting
network intrusion attacks using a combination of rule-based matching and in-depth analysis.
It communicates with the PELID-based DeepInspector component via Unix sockets with
the interprocess communication mechanism. In the case of sensing enabled, the PCAP data

is sent to DeepAnalyzer for further analysis.

4.4.3 Accelerating AI-powered Intrusion Detection in User Space

The RX queue receives incoming packets for applications that employ network devices. The
Direct Memory Access (DMA) mechanism transfers it to the main memory. The system
must then be notified of the new packet and move the data into a buffer that has been
specifically allotted (Linux allocates these buffers for each packet). For the Linux operating
system, every new transmission the system receives requires a context-switching mechanism
to allocate these buffers. The userspace networking system will handle the packet [66] in
the subsequent phase.

The mechanism mentioned above causes congestion when more packets must be pro-
cessed due to increased resource consumption, thereby decreasing the system’s overall
efficacy. Particularly, the packet allocation mechanism in the kernel requires numerous

CPU-to-main-memory data transfer cycles. The data structure of the Linux network stack

1See more at https://www.dpdk.org
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is typically compatible with as many protocols as feasible. The excessively complex stack
slows down processing compared to simply analyzing network packets.

In addition to requiring a great deal of context switching, packet processing in the kernel
has a negative impact on performance. When a userspace application must send or receive
a payload, it makes a system call. The context is transferred from user mode to kernel
mode and back again, consuming a significant amount of system resources.

To improve NetIPS performance for controlling large-scale network traffic, we use a
Napatech SmartNIC NT40E3 4x10Gbps, instead of traditional NIC ports. All incoming
traffic will be passed directly to the DPDK library [41] are then analyzed by NetIPS as

follows:

1. Every incoming packet first goes to the ring buffer and then is passed to NetIPS via
the DPDK library. It also takes the role of checking this buffer area for new packets

received periodically.

2. If the ring buffer contains a new packet, NetIPS refers to the DPDK packet in the

buffer, a specially allocated memory area using pointers.

3. If the ring buffer contains no packets, NetIPS will queue the network devices under
the DPDK and refer to the buffer again.

In NetIPS, Deeplnspector is also deployed in the userspace as an independent process.
Therefore, NetIPS enhances the speed and reduces the latency of flow inspection for large-
scale networks. The alert messages generated by Deeplnspector are stored in a JSON file
with the same structure as Suricata. New rules created by Deeplnspector are represented
as indicators of compromise (IoCs) and updated into the ruleset of Suricata.

Currently, our NetIPS is successfully deployed in inline mode to proactively detect and
prevent intrusions on the large-scale network of the Vietnam National University (VNU, a

federation of numerous universities) with a maximum throughput of 10 Gbps.

4.5 Summary

Chapter 4 addresses the critical challenge of deploying Al-powered intrusion detection and
prevention systems in large-scale, real-world environments, where requirements for real-
time performance, scalability, and operational reliability are paramount. Building upon
the data enhancements and ensemble modeling innovations developed in previous chapters,
this chapter introduces and evaluates a comprehensive architecture for practical, high-
throughput network defense.

The chapter begins by identifying key bottlenecks encountered by traditional Al-based
security systems when deployed in enterprise or large service provider networks, such as high
computational latency, limitations due to sequential inference, and insufficient adaptability
to sudden fluctuations in network traffic. These constraints significantly hinder the ability

to operate at wire speed and respond promptly to emerging threats.
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To overcome these issues, Chapter 4 proposes the design and implementation of NetIPS,

a scalable intrusion prevention architecture that integrates several key innovations:

e Parallel ensemble inference: The system uses parallel processing techniques to con-
currently execute multiple deep learning and boosting models, drastically reducing

inference latency and allowing real-time analysis of high-speed data streams.

e Dynamic flow sensing strategy: NetIPS employs adaptive sensing methods to priori-
tize suspicious or high-risk traffic flows, ensuring efficient allocation of computational

resources without compromising detection effectiveness.

e User-space Processing Architecture: Using user-space packet processing frameworks,
the system achieves high flexibility and throughput, allowing seamless integration with

existing network infrastructure.

e Integrated sandbox: A notable practical contribution is the ability to dynamically
integrate a sandbox, where suspicious samples, especially files, are automatically trans-
ferred to an isolated environment (sandbox) for execution and behavioral analysis.
This enables detection, deep analysis, and automatic labeling of new or unclear sam-
ples, while significantly enhancing the capability to detect zero-day malware and
variants not previously seen in the training data. The sandbox feature also extends the
pipeline from detection to root cause analysis and supports early response to advanced
threats.

Evaluation metrics such as throughput, latency, and detection accuracy show that NetIPS
consistently maintains wire-speed performance and high detection rates. Furthermore,
comparative studies with other state-of-the-art systems demonstrate NetIPS’s superior scal-
ability and robustness, especially in scenarios involving sudden traffic surges or sophisticated
multistage attacks.

These research results have been partially presented in published works, including two
articles in respected journals (VVH-J1, VVH-J2) and one conference article (VVH-C1),
highlighting the novel and significant contributions discussed in this chapter. Specifically,
VVH-J1 and VVH-J2 describe the design, implementation, and real-world evaluation of
the NetIPS system, a scalable real-time Al-powered intrusion prevention architecture that
integrates parallel ensemble inference, dynamic flow sensing, user-space packet processing,
and sandboz integration. VVH-C1 presents and analyzes the combination of rule-based and
deep learning detection in practical environments. Together, these publications demonstrate
the creativity and scientific value of the contributions of the chapter, laying the foundation

for mext-generation, real-world cybersecurity solutions.
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Contribution Highlights

Intrusion and malware attacks pose serious risks to modern digital infrastructure, pri-
marily due to their ability to bypass traditional defense layers and evade detection using
increasingly sophisticated techniques. These threats are often difficult to detect because
they can mimic legitimate behavior and hide within large-scale network traffic or complex
system environments. This dissertation approaches the problem from three main directions:
(i) designing data-centric augmentation strategies to improve the quality and balance of
machine learning datasets; (ii) developing robust hybrid ensemble frameworks that combine
deep learning and boosting algorithms to achieve superior detection capabilities; and (iii)
deploying large-scale network intrusion detection systems utilizing strategies using flow
sensing, parallel execution, and sandbox. The dissertation leverages advances in deep
learning and boosts learning and ensemble modeling to enhance overall model performance
while increasing resilience in intrusion detection.

Our dissertation systematically surveys topics related to intrusion detection, including
network attack techniques and threat detection, and synthesizes related work to identify
existing research gaps. From there, the directions and objectives are clearly defined,
focusing not only on balancing dataset and optimizing detection performance but also on
ensuring scalability, transparency, and real-world deployment. Through the development
and evaluation of augmentation dataset, feature optimization, mutual ensemble learning
techniques, and the successful deployment of a real-time Al-powered intrusion prevention
system. At the end of the study, the following contributions have clearly demonstrated the

achievement of all research objectives.

e Propose a machine learning pipeline with data augmentation and feature optimization
(WGAN-powered augmentation + SHAP-based feature optimization) to balance and
enhance the quality of training datasets, thereby improving the detection capability

for minority-class attacks.

e Introduce a deep and boosting mutual inference framework that strengthens the accu-

racy and resilience of intrusion and malware detection systems.

e Propose a solution to address data bottlenecks in large-scale network intrusion pre-
vention through a time-interval and frequency-based flow sensing strategy, combined

with parallelized inference of deep and boosting mutual inference models.

e Integrate the proposed methods into the NetIPS real-time intrusion detection and
prevention system, which leverages Al-based models at the user level to process high-

volume traffic (on a large scale), making it suitable for enterprise and ISP networks.
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Dissertation Limitations

Although the research has yielded promising results, it is important to acknowledge several

limitations.

o All tests were performed using fixed datasets that were prepared in advance, which
means that we cannot see how well the model would adapt to real-life situations or

when the data change over time.

e The NetIPS component has not yet been extensively validated in various real-world
scenarios. In particular, comprehensive evaluations of hardware performance and

deployment feasibility have not been conducted in large-scale production networks.

e The current experimental design does not include ablation studies to quantify the
contribution of individual components or techniques to the overall performance. Such
evaluations could provide more details on the effectiveness of the system and guide

future optimizations.

e The models were trained primarily on structured network or PE data. More complex
attack vectors, such as encrypted traffic, multistage malware, or supply chain attacks,

were not within the scope of this study.

Future Research Directions

Building upon the foundations laid in this dissertation, several research directions are open

for exploration:

e Online and continuous learning: Integrating online learning methods and incremental
retraining into detection pipelines could allow models to adapt to evolving threats and

handle dynamic environments more effectively.

e Future systems could use different types of data, such as how hosts behave, process
trees, user activities, and patterns in encrypted traffic, all within a single detection

framework.

e Automated response and defense integration: Improving detection systems with im-
mediate actions, like automatically blocking threats, updating rules, or prioritizing

alerts, can connect simple detection with active defense.

e Making it easier to understand decisions: Creating simple and user-friendly tools that
explain how Al systems work, particularly for endpoint systems, can build trust and

help security analysts work better with Al tools.
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