
VIETNAM NATIONAL UNIVERSITY HANOI

UNIVERSITY OF ENGINEERING AND TECHNOLOGY

Vo Van Hoang

ENHANCING INTRUSION DETECTION PERFORMANCE

BY DATA AUGMENTATION, PARALLEL ENSEMBLE

INFERENCE, AND FLOW SENSING STRATEGY

PHD DISSERTATION IN INFORMATION SYSTEMS

Ha Noi - 2025



VIETNAM NATIONAL UNIVERSITY HANOI

UNIVERSITY OF ENGINEERING AND TECHNOLOGY

Vo Van Hoang

ENHANCING INTRUSION DETECTION PERFORMANCE

BY DATA AUGMENTATION, PARALLEL ENSEMBLE

INFERENCE, AND FLOW SENSING STRATEGY

Major: Information Systems

Code: 9480104.01

PHD DISSERTATION OF INFORMATION SYSTEMS

PhD STUDENT SUPERVISORS

Vo Van Hoang Nguyen Ngoc Hoa Nguyen Ngoc Tu

Ha Noi - 2025



Declaration of Authorship

I, Vo Van Hoang, declare that this dissertation titled, “ENHANCING INTRUSION DE-

TECTION PERFORMANCE BY DATA AUGMENTATION, PARALLEL ENSEMBLE

INFERENCE, AND FLOW SENSING STRATEGY” and the work presented in it are my

own. I confirm that:

■ This work was done mainly while in candidature for the degree of Ph.D at VNU

University of Engineering and Technology.

■ This dissertation has not previously been submitted for any degree.

■ The results in my dissertation are my independent work, except where works in

the collaboration have been included. Other appropriate acknowledgments are given

within this dissertation by explicit references.

Signed:

Date:

i



Acknowledgements

This dissertation is the culmination of a long and challenging journey, and it would not

have been possible without the invaluable support, guidance, and encouragement I have

received from many individuals.

First and foremost, I wish to express my heartfelt gratitude to my supervisors, Associate

Professor Nguyen Ngoc Hoa and Associate Professor Nguyen Ngoc Tu. Their deep expertise,

steadfast guidance, and unwavering patience have been essential to every stage of this

research. Their insightful feedback and persistent encouragement have shaped not only the

quality of this work but also my own academic growth. I am profoundly thankful for their

mentorship and belief in my potential.

I am also deeply grateful to my colleagues and friends, whose support, camaraderie,

and inspiring conversations have sustained my motivation and helped me overcome the

inevitable challenges along the way. Their encouragement has made this demanding journey

both enriching and rewarding.

Above all, I extend my deepest thanks to my family. Their unconditional love, under-

standing, and sacrifice have been my anchor and my greatest source of strength. Without

their constant support and faith, this achievement would not have been possible.

To all who have contributed to this work and supported me in ways both big and small,

I offer my sincere thanks. This accomplishment is as much yours as it is mine.

ii



Abstract

Rapid proliferation and increasing sophistication of cyberattacks pose formidable challenges

to traditional intrusion and malware detection methods, especially with regard to accuracy,

scalability, interpretability, and real-time responsiveness. Addressing these critical issues,

this dissertation proposes an integrated AI-powered threat detection framework that ad-

vances the state of large-scale cybersecurity defense across three tightly connected research

threads.

First, to overcome the pervasive class imbalance and high-dimensional feature redun-

dancy in cybersecurity datasets, an innovative data-centric pipeline is introduced. This

pipeline proposes a method to augment the quality of the training dataset by compressing

samples in the majority classes and generating more realistic samples in minority classes;

determining the optimal feature set to enhance efficiency regarding detection rate. The

result is a balanced and meaningful training set that significantly improves the detection of

minority and emerging threats, laying a robust data foundation for subsequent modeling.

Second, leveraging this enhanced dataset, the dissertation develops a mutual deep+boosting

ensemble approach that fuses the strengths of neural networks and advanced boosting

models. We employ an ensemble of mutual deep learning and gradient-boosting inference,

initially for voting among multiple AI-based classifiers, followed by stacking individual and

voting probability predictions to improve malware detection and reduce vulnerability to

model poisoning.

Third, to bridge the gap between research prototypes and real-world deployment, the

dissertation presents NetIPS, a scalable, real-time intrusion prevention system. NetIPS

integrates dynamic flow sensing with parallel ensemble inference and sandbox, enabling

the system to focus computational resources on high-risk traffic and maintain wire-speed

performance in large-scale operational environments.

Extensive experiments on multiple benchmark datasets, such as CSE-CIC-IDS2018,

NSL-KDD, EMBER, and BODMAS, demonstrate the effectiveness of the proposed meth-

ods, with clear improvements in recall, overall accuracy, model transparency, and readiness

for deployment. The dissertation contributions are supported by 03 SCI/E-indexed journal

articles and 04 WoS-indexed conference articles. Together, this work delivers a coherent

scientific foundation and a practical roadmap for developing next-generation, explainable,

and deployable AI-powered cyber defense systems.

iii



Table of Contents

Declaration of Authorship i

Acknowledgements ii

Abstract iii

List of Abbreviations ix

Introduction 1

Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Research Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Research Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Research Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1 Preliminaries and Literature Reviews 9

1.1 Fundamental Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 Intrusion Detection System . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.2 Common Types of Network Attacks . . . . . . . . . . . . . . . . . . . 11

1.1.3 Machine Learning in Cybersecurity . . . . . . . . . . . . . . . . . . . 15

1.1.4 Class Imbalance in Cybersecurity Dataset . . . . . . . . . . . . . . . 16

1.1.5 Ensemble Learning in Intrusion Detection . . . . . . . . . . . . . . . 18

1.2 Approaches to Threat Detection . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.1 AI-powered Intrusion Detection . . . . . . . . . . . . . . . . . . . . . 19

1.2.2 AI-powered Malware Detection . . . . . . . . . . . . . . . . . . . . . 20

1.2.3 Handling Imbalanced Datasets . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.1 Deep and Boosting Learning for Intrusion Detection . . . . . . . . . . 22

1.3.2 Deep and Boosting Learning for Malware Detection . . . . . . . . . . 24

1.3.3 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4 Dataset Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.5 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

iv



TABLE OF CONTENTS v

1.6 Research Gaps and Approach Direction . . . . . . . . . . . . . . . . . . . . . 30

1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 Enhancing AI-powered Intrusion Detection with Data Augmentation and

Feature Optimization 34

2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Approach Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Training Dataset Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.1 Difficulty-Aware-based Data Augmentation . . . . . . . . . . . . . . . 38

2.3.2 AWGAN-based Data Augmentation . . . . . . . . . . . . . . . . . . . 40

2.4 Feature set Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.1 Feature Extraction and Cleaning . . . . . . . . . . . . . . . . . . . . 42

2.4.2 Feature Vectorizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.3 Feature Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.4 SHAP-based Feature Set Optimization . . . . . . . . . . . . . . . . . 44

2.5 Experiments and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5.1 Dataset Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5.2 Results and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3 Enhancing AI-powered Intrusion Detection with Mutual Deep and Boost-

ing Inference 61

3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Network Intrusion Detection via AI-Powered Deep Analysis . . . . . . . . . . 62

3.2.1 Direction Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.2 Network Traffic Flow Modeling . . . . . . . . . . . . . . . . . . . . . 65

3.2.3 DNN-based Intrusion Detection Algorithm . . . . . . . . . . . . . . . 65

3.2.4 Boosting-based Intrusion Detection Algorithm . . . . . . . . . . . . 67

3.2.5 Hyperparameter Optimization . . . . . . . . . . . . . . . . . . . . . . 68

3.2.6 Experiments and Evaluation . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.7 Comparison with SOTAs . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3 Malware Detection via Mutual Deep and Boosting Ensemble Learning . . . . 72

3.3.1 Approach Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.2 Mutual Deep and Boosting Learning . . . . . . . . . . . . . . . . . . 74

3.3.3 Combination of Voting and Stacking Ensemble Learning . . . . . . . 75

3.3.4 Hyperparameter Optimization . . . . . . . . . . . . . . . . . . . . . . 77

3.3.5 Experiments and Evaluation . . . . . . . . . . . . . . . . . . . . . . . 78



TABLE OF CONTENTS vi

3.3.6 Comparison with SOTAs . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4 Holistic Large-Scale AI-powered Intrusion Prevention with Flow Sensing

Strategy and Parallel Ensemble Inference 84

4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Proposed Holistic Intrusion Detection Framework . . . . . . . . . . . . . . . 86

4.2.1 Approach Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.2 Parallel Ensemble Inference-based Intrusion Detection . . . . . . . . . 87

4.2.3 Strategy for AI-powered real-time intrusion detection . . . . . . . . . 90

4.2.4 Hunting Malware by Sandbox Approach . . . . . . . . . . . . . . . . 91

4.3 Experiments and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3.3 Comparison with SOTAs . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4 NetIPS: Deployment of Network Intrusion Detection and Prevention . . . . 100

4.4.1 Deployment Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4.2 Hypermatching for Signature-based Detector . . . . . . . . . . . . . . 101

4.4.3 Accelerating AI-powered Intrusion Detection in User Space . . . . . . 101

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Conclusions and Future Work 104

Contribution Highlights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Dissertation Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Personal Publications 106

Journals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Conferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

BIBLIOGRAPHY 106



List of Figures

2.1 Architecture of AWGAN-based Data Augmentation . . . . . . . . . . . . . . 40

2.2 Testbed Architecture for SQL-Injection Attack Generation . . . . . . . . . . 47

2.3 SHAP-based Feature Important Scores on EMBER2018 Dataset . . . . . . . 52

2.4 Threshold-based Performances on EMBER2018 Dataset . . . . . . . . . . . . 52

2.5 Threshold-based Performances on BODMAS Dataset . . . . . . . . . . . . . 52

2.6 Difficulty-Aware-based Visualization of CSE-CIC-IDS2018 Training Set . . . 54

2.7 Difficulty-Aware-based Visualization of NSL-KDD Training Set . . . . . . . 54

2.8 AWGAN-based Visualization of CSE-CIC-IDS2018 Training Set . . . . . . . 56

2.9 AWGAN-based Visualization of NSL-KDD Training Set . . . . . . . . . . . . 56

3.1 Network Intrusion Detection by Using AI-powered Deep Analysis . . . . . . 63

3.2 DNN-based Intrusion Detection. . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3 Architecture of MDOB-based Malware Detection . . . . . . . . . . . . . . . 73

3.4 Architecture of CNN Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5 CNN Training Performance based EMBER2018 (565 features) . . . . . . . . 80

3.6 EMBER2018-based Performance on 565 Features . . . . . . . . . . . . . . . 80

3.7 BODMAS-based Performance on 165 Features . . . . . . . . . . . . . . . . . 81

4.1 Architecture of Holistic Intrusion Detection . . . . . . . . . . . . . . . . . . . 87

4.2 Malware Hunting Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 Comparing time consumption (milliseconds) between parallel and sequential

processing of PELID. ‘Baseline’ illustrates the average execution time of five

individual AI models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 APELID-based NetIPS Architecture . . . . . . . . . . . . . . . . . . . . . . 100

vii



List of Tables

1.1 Summary of Common Network Attack Types . . . . . . . . . . . . . . . . . 14

1.2 Summary of Related Works based Intrusion Detection . . . . . . . . . . . . . 26

1.3 Summary of Related Works based Malware Detection . . . . . . . . . . . . . 29

2.1 Dificulty-Aware-based Data Augmentation . . . . . . . . . . . . . . . . . . . 48

2.2 AWGAN-based Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . 49

2.3 Evaluation of AI models on Dificulty-Aware-based Data Augmentation (%) . 55

2.4 Evaluation of AI models on WGAN-based Data Augmentation (%) . . . . . 56

2.5 Evaluation of AI models on Original Datasets(%) . . . . . . . . . . . . . . . 57

2.6 Evaluation of AI models based Features set Optimization (%) . . . . . . . . 58

3.1 Hyperparameter Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2 Confusion Matrix of S1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Confusion Matrix of S2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . 69

3.4 Performance Evaluation based Network Intrusion Detection . . . . . . . . . . 70

3.5 Comparison of PAID with other SOTA methods . . . . . . . . . . . . . . . . 71

3.6 Evaluation of AI models based Malware Detection (%) . . . . . . . . . . . . 81

3.7 Comparison of MDOB with SOTA Methods (%) . . . . . . . . . . . . . . . . 82

4.1 Confusion Matrix of CSE-CIC-IDS2018-based PELID . . . . . . . . . . . . . 93

4.2 Confusion Matrix of NSL-KDD-based PELID . . . . . . . . . . . . . . . . . 93

4.3 Evaluation of AI models based PELID (%) . . . . . . . . . . . . . . . . . . . 94

4.4 Malware Hunting Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5 Comparison of APELID with SOTA Methods (%) . . . . . . . . . . . . . . . 99

viii



List of Abbreviations

Abbreviation Full Term

ANN Artificial Neural Network

AES Advanced Encryption Standard

APT Advanced Persistent Threat

AutoGluon AutoML Toolkit

AutoML Automated Machine Learning

AWGAN Augmented Wasserstein Generative Adversarial Network

Ax Adaptive Experimentation Platform

BME Bagging Model Ensemble

BODMAS
Benign and Malicious Portable Executable Dataset for

Malware Detection

CBT CatBoost

CICFlowMeter Canadian Institute for Cybersecurity Flow Meter

CNN Convolutional Neural Network

CRNN Convolutional Recurrent Neural Network

CSE-CIC-

IDS2018

Canadian Institute for Cybersecurity Intrusion Detection

System 2018

DIC Deep Inspection Cycle

DIW Deep Inspection Window

DL Deep Learning

DNN Deep Neural Network

EMBER Endgame Malware Benchmark for Research

ENN Edited Nearest Neighbours

F1 F1-score

FAR False Acceptance Rate

FastAI Deep Learning Framework (Python)

FNR False Negative Rate

FPR False Positive Rate

GAN Generative Adversarial Network

GBM Gradient Boosting Machine

IDS Intrusion Detection System

ix



List of Abbreviations x

Abbreviation Full Term

IPS Intrusion Prevention System

IoC Indicator of Compromise

KNN K-Nearest Neighbors

LightGBM Light Gradient Boosting Machine

LSTM Long Short-Term Memory

MDOB Mutual Deep+Boosting (Ensemble Learning)

ML Machine Learning

NSL-KDD NSL Knowledge Discovery in Databases

Optuna Optimization Framework for Hyperparameter Tuning

PAID Parallel AI-powered Intrusion Detection

PE Portable Executable (file format)

PELID Parallel Ensemble Learning-based Intrusion Detection

RF Random Forest

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

SDAID Signature and Deep Analysis-based Intrusion Detection

SHAP SHapley Additive exPlanations

SMOTE Synthetic Minority Over-sampling Technique

SOTA State-Of-The-Art

SQLi SQL-Injection

Suricata Open-source IDS/IPS engine

SVM Support Vector Machine

t-SNE t-distributed Stochastic Neighbor Embedding

VM Virtual Machine

XGB,XGBoost Extreme Gradient Boosting

YARA Tool for Identifying and Classifying Malware Samples



Introduction

Motivation

Recently, the increasing wave of cyberattacks has underscored the urgent need for more

intelligent, adaptive and scalable threat detection systems. As digital transformation accel-

erates across critical domains ranging from government and healthcare to financial services

and industrial control systems, cybersecurity has transitioned from a technical concern

to a national security imperative [61, 16]. The increasing dependence on interconnected

systems, cloud services, and ubiquitous computing platforms has significantly expanded the

attack surface, providing adversaries with more entry points, vectors, and opportunities for

disruption.

Although cybersecurity tools have traditionally relied on signature-based and rule-driven

detection mechanisms, such approaches struggle to keep pace with modern threats [15, 16].

Static rule engines are inherently reactive: they are only as effective as the knowledge base

that drives them. This limitation makes them vulnerable to zero-day attacks, polymorphic

malware, and adversarial evasion techniques. In addition, traditional intrusion detection

systems (IDS) often produce too many false alarms, struggle to handle new types of data,

and do not adapt well to changing network conditions. These systemic shortcomings call

for a paradigm shift towards AI-powered detection frameworks that can learn from data,

recognize evolving attack patterns, and generalize beyond known threats.

The application of machine learning (ML) and deep learning (DL) in cybersecurity offers

a promising pathway to enhance threat detection capabilities [50, 52, 105, 22, 67]. By

learning from vast datasets of network traffic, system logs, and binary executables, these

models can automatically identify patterns associated with malicious behavior, often with

minimal human supervision. However, the practical deployment of ML/DL in cyberse-

curity is fraught with its set of challenges [75]. Unlike controlled environments in other

ML domains, such as image classification or language modeling, cybersecurity data are

inherently noisy, imbalanced, high-dimensional, and subject to adversarial interference.

These characteristics pose unique difficulties for both learning and generalization.

One of the most pressing concerns is the issue of class imbalance in cybersecurity datasets

[25]. Most publicly available intrusion and malware datasets contain an overwhelming

proportion of benign samples and a relatively small number of malicious instances. Further-

more, within the malicious category, attack types are often unevenly distributed with a few

dominant classes overshadowing rarer but equally dangerous threats. This imbalance biases

1



Introduction

learning algorithms toward majority classes and severely impairs their ability to detect

minority classes, which often represent zero-day or advanced persistent threats (APTs).

The consequence is a high false-negative rate and an unacceptable failure mode for any

intrusion detection system.

Equally problematic is the heterogeneity and complexity of feature spaces in cyber threat

datasets. Network traffic data and executable files often contain hundreds or thousands of

features, many of which are redundant, irrelevant, or weakly correlated with the target

classes. Training ML models with such data increases computational complexity and

introduces noise that dilutes the learning signal. Furthermore, complex deep learning

models like convolutional neural networks (CNNs) and recurrent neural networks (RNNs)

are very effective in learning patterns, but they work like “black boxes,” meaning that we

cannot easily understand how they make decisions, which is a big problem in security-

sensitive areas where we need to explain, audit, and trust the results.

Another obstacle arises from the lack of real-time inference capability in many existing

systems [1]. Although high detection accuracy is possible in controlled settings, using these

models in real-world situations such as data centers or edge devices often shows serious

problems with speed, capacity, and flexibility. The need for lightweight, scalable, and

ensemble-capable solutions has never been more pronounced.

Motivated by these challenges, this dissertation proposes a unified research roadmap

that seeks to improve learning performance, resilience, and explainability in AI-based

malware and intrusion detection systems. By integrating methods for balancing dataset,

feature refinement, model-specific optimization, and multimodel inference, the goal is to

design systems that are not only accurate but also robust, interpretable, and deployable in

realistic operational contexts. Through this lens, the dissertation aims to contribute both

theoretically and practically to the next generation of intelligent cybersecurity systems that

are not only technically sound but also operationally viable in the ongoing arms race against

cyber adversaries.

The increasing size, variety, and complexity of today’s cyberattacks, particularly those

using clever and changing methods, have shown that traditional detection and prevention

systems have serious weaknesses. Although recent advances in machine learning and deep

learning have shown promise in addressing some of these challenges, many existing ap-

proaches continue to struggle with critical issues such as data imbalance, feature redundancy,

model interpretability, and real-time operational constraints. Addressing these unresolved

gaps and pushing the boundaries of intelligent, scalable, and explainable threat detection

forms the core motivation for this dissertation. However, these studies still have certain

limitations and there is much room for improvement. This is the main motivation for us

2



Introduction

to carry out this dissertation.

Research Challenges

Despite remarkable advances in artificial intelligence (AI), deploying effective malware and

intrusion detection systems in real-world environments remains difficult due to a combina-

tion of technical, operational, and structural challenges. This dissertation focuses on three

core research areas, balancing dataset, robustness and generalization of ensemble learning

models, and scalable real-time detection, and identifies the following major challenges:

1. Challenge 1: Cybersecurity datasets are heavily imbalanced, with the vast majority

of samples belonging to benign traffic or a few common attack types, while rare but

dangerous threats (e.g., infiltration, exfiltration, and zero-day attacks) are underrep-

resented. This leads to biased model learning and poor detection of minority attacks.

Conventional oversampling methods, such as SMOTE, often focus on increasing the

sample quantity without preserving semantic fidelity, risking the introduction of noisy

or unrealistic samples. In cybersecurity, where context and behavior define threat

patterns, careless augmentation can degrade model performance and even create arti-

facts. Thus, there is a critical need for sophisticated quality-driven data enrichment

methods that leverage adversarial generation and clustering-based filtering to produce

meaningful and semantically coherent samples for underrepresented classes, enhancing

model learning without overfitting.

2. Challenge 2: Achieving high accuracy and low false positive rates in AI-powered

intrusion detection systems, while maintaining overall system performance and in-

terpretability, remains a persistent challenge. Boosting and deep learning models

need to be carefully integrated and configured to balance accuracy, efficiency, and

robustness. The challenge lies in selecting appropriate models for each dataset and

effectively combining machine learning models to maximize performance and enhance

system resilience in intrusion detection.

3. Challenge 3: For AI-powered intrusion detection systems to be operationally viable,

they must process large volumes of traffic at wire speed with minimal delay. However,

the computational complexity of machine learning models often hinders real-time

deployment. The challenge lies in designing lightweight, scalable model architectures

to maintain detection quality while ensuring high throughput and low latency. The in-

herent computational complexity of advanced AI models makes it difficult to maintain

both high throughput and reliable performance in demanding real-world environments.

3



Introduction

Together, these challenges underscore the need for a multifaceted detection framework

that integrates data-centric augmentation, ensemble learning, explainability, and architec-

tural optimization. The solutions proposed in this dissertation aim to bridge these gaps with

validated improvements across detection accuracy, robustness, scalability, and operational

interpretability.

Research Objectives

This dissertation focuses on the development of AI-powered threat detection systems that

are not only accurate and robust, but also scalable and interpretable for real-world deploy-

ment. To achieve this overarching goal, the research is structured around the following three

core objectives, each corresponding to a major contribution presented in Chapter 1, Chap-

ter 2, Chapter 3, and Chapter 4:

• Objective 1: An overview of cyberattacks and the techniques used by hackers to carry

out such attacks. Research intrusion and malware detection techniques and analyze

the advantages and disadvantages of each method. Evaluate the results of the latest

research related to the problem of intrusion detection.

• Objective 2: We propose a augmentation dataset method that aims to improve the

quality of minority attack samples, select the most representative samples from the

majority classes; minimize training noise by identifying important features within the

dataset. This approach improves the quality of the training dataset and boosts the

performance of machine learning models. This objective arises from the fact that

cybersecurity datasets often suffer from severe class imbalance, where minority attack

types are underrepresented, or the feature space is highly dimensional.

• Objective 3: Traditional intrusion detection methods often struggle with generalization

and robustness against novel or adversarial attacks. This objective aims to integrate

neural networks with boost models through soft voting and stacking strategies. The

goal is to take advantage of the complementary strengths of each type of model to

improve the accuracy of the classification in both host-based and network-based threat

detection. Specifically, we employ an ensemble of mutual deep learning and gradient-

boosting inference, initially using soft voting among multiple AI-based classifiers,

followed by stacking the individual and voting probability predictions to enhance

malware detection and reduce vulnerability to model poisoning.

• Objective 4: AI-based detection systems often suffer from inference latency and limited

scalability. This objective aims to design a lightweight, high-throughput detection

4



Introduction

architecture with support for flow-based sensing and parallel ensemble inference. The

resulting system is implemented in the user space and is evaluated under simulated

network conditions to validate low-latency operation and reliable threat detection.

These objectives form the foundation for the dissertation’s contributions to practical and

theoretical advancements in AI-driven cybersecurity detection systems.

Research Scope

To achieve the objectives of this dissertation, we focus on the following key areas:

1. Research data structures and class imbalance in intrusion detection datasets and study

machine learning and deep learning models for their effectiveness.

2. Research focuses on building lightweight high-throughput detection architectures suit-

able for real-time deployment in large-scale networks.

Research Methodologies

This dissertation employs a systematic and layered research methodology, as outlined below:

• Theoretical Methodology: We conduct a comprehensive survey, synthesis, and

evaluation of previous research relevant to intrusion detection and malware classifica-

tion. The focus is on analyzing prior solutions to class imbalance, real-time detection

bottlenecks, and the lack of explainability in AI-based security models. The literature

is collected from highly regarded sources such as IEEE Xplore, ACM Digital Library,

SpringerLink, ScienceDirect, and Wiley Online Library. From this review, we find

research gaps and suggest ways to improve learning performance, detection strength,

and understanding of models.

• Experimental Methodology: The proposed frameworks and algorithms are em-

pirically validated through extensive experiments on multiple benchmark datasets,

including public and custom-prepared corpora, specifically:

– For balancing dataset, the methodology leverages an advanced adversarial aug-

mentation dataset, feature optimization on datasets such as CSE-CIC-IDS2018,

EMBER. The effectiveness in improving minority class detection and generaliza-

tion is thoroughly evaluated.

5



Introduction

– For robust mutual deep+boosting ensemble inference, the experimental setup

integrates Neural Networks with gradient boosting models, employing soft voting

and stacking. Performance is evaluated on both network-based intrusion and host-

based malware classification tasks (e.g. NSL-KDD, BODMAS), with emphasis on

accuracy, robustness, and model interpretability.

All algorithms are implemented in Python utilizing frameworks such as PyTorch,

scikit-learn. Experimental results are rigorously compared with current state-of-the-

art baselines, using standard metrics including accuracy, precision, recall, F1 score,

AUC, and model explainability indicators.

Research Contributions

This dissertation presents a series of technical contributions that collectively advance the

design, robustness, and deployability of AI-powered malware and intrusion detection sys-

tems. The key contributions are as follows:

1. We propose methods for augmentation dataset and feature set optimization. The

approach integrates adversarial sample generation to enrich the minority class and em-

ploys filtering techniques to retain only semantically meaningful samples from the ma-

jority class. Additionally, for high-dimensional datasets, we perform rigorous feature

selection to minimize redundancy while preserving the most discriminative attributes.

This method significantly improves the ability to correctly identify the minority class

and improves the overall performance of the model, as shown in tests on standard

datasets such as CSE-CIC-IDS2018. This contribution is derived from Chapter 2 and

supported by VVH-J1, VVH-J2, VVH-J3, VVH-C2 and VVH-C4, as these works detail

advanced augmentation dataset, feature optimization.

2. We propose an integrated ensemble architecture that combines neural networks with

boosting classifiers using both soft voting and stacking strategies. This hybrid frame-

work leverages the complementary strengths of deep learning and tree-based models

to enhance detection accuracy, robustness, and interpretability. Furthermore, by

diversifying the modeling approaches, our method reduces vulnerability to model

poisoning attacks and increases overall system resilience. Tests on well-known datasets

show that the proposed combination of models consistently performs better than using

only one model alone. This contribution is developed in Chapter 3 and informed by

VVH-J1, VVH-J3, VVH-C1, and VVH-C3, focusing on mutual ensemble inference

soft voting and stacking.

6



Introduction

3. We design and implement NetIPS, a lightweight and real-time intrusion detection

and prevention architecture optimized for large-scale network environments. Our

system integrates signature-based detection, deep analysis, and behavioral analysis

to achieve comprehensive intrusion detection. A dedicated analysis strategy is devel-

oped to coordinate these detection techniques optimally, allowing the system to take

advantage of the unique strengths of each approach and ensure scalability for large

network deployments. Evaluation on well-known benchmark datasets demonstrates

that NetIPS achieves real-time performance without compromising detection quality.

This contribution corresponds to Chapter 4 and is supported by VVH-J1, VVH-J2, and

VVH-C1, validating the effectiveness of flow sensing, parallel inference, and practical

implementation of NetIPS in large-scale environments.

Thesis Structure

This dissertation is structured into four chapters, each contributing to a cohesive research

trajectory that spans data preparation, model development, and real-world deployment of

AI-powered threat detection systems:

• Chapter 1 This chapter presents essential background knowledge in intrusion and

malware detection, with an emphasis on machine learning, deep learning, and ensemble

techniques. The chapter discusses common challenges such as class imbalance, high-

dimensional data, and model interpretability. A comprehensive survey of existing work

is conducted to identify research gaps and justify the proposed directions.

• Chapter 2 proposes augmentation dataset methods for machine learning, focusing

on addressing the imbalance between minority and majority classes in the dataset.

With the proposed approaches, the majority classes are sampled to select the most

representative instances for training, while new high-quality samples are generated

for the minority classes to ensure that both quantity and quality are on par with

the majority classes, thereby balancing the class distribution for model training. In

addition, the feature selection method helps to identify important and contributing

features during training, eliminating low-value features to enhance model performance.

This approach effectively addresses the problem of imbalance in the dataset for model

training, ultimately improving the overall performance of the models.

• Chapter 3 focuses on improving machine learning models to enhance performance.

The chapter proposes combining and mutually reinforcing different types of models

to increase intrusion detection effectiveness and system robustness. Each model has

7



Introduction

its own strengths, and their integration allows them to complement each other, thus

improving detection capabilities and compensating for each other’s limitations and

reducing vulnerability to model poisoning.

• Chapter 4 proposes a practical deployment approach for intrusion detection systems

in large-scale networks. A comprehensive process for intrusion detection is introduced

that integrates both signature-based and behavior-based analysis, along with execu-

tion and sampling strategies. This forms a solution that enables the deployment of

intrusion detection systems in large-scale network environments. With this approach,

system performance is enhanced, analysis time is minimized, and the strengths of each

component are maximized, enabling efficient and scalable intrusion detection for large

networks.

8



Chapter 1

Preliminaries and Literature Reviews

This chapter provides the essential theoretical foundation and a comprehensive overview

of the existing research landscape relevant to AI-powered intrusion and malware detection.

First, it introduces fundamental concepts such as intrusion detection systems (IDS), mal-

ware detection, and the application of machine learning techniques in cybersecurity. Next,

it discusses critical challenges, including class imbalance, high-dimensional dataset, and the

need for model interpretability in real-world threat detection scenarios.

Furthermore, the chapter surveys state-of-the-art approaches and related work in the

fields of augmentation dataset, machine learning model approach for both network-based

and host-based intrusion detection. By synthesizing recent advances and highlighting

unresolved issues, this chapter establishes the context and motivation for the novel method-

ologies and solutions proposed in subsequent chapters. In general, Chapter 1 aims to equip

the reader with the foundational knowledge and critical perspective necessary to understand

the research contributions and innovations presented in this dissertation.

1.1 Fundamental Concepts

1.1.1 Intrusion Detection System

Intrusion Detection Systems (IDS) are a fundamental component in modern cybersecurity

infrastructure, designed to monitor system or network activity for signs of malicious be-

havior or policy violations [16, 83]. The core function of an IDS is to detect attempts at

unauthorized access, exploit vulnerabilities, or anomalous behavior indicative of potential

attacks. IDS solutions serve as a critical line of defense in preventing, identifying, and

responding to cyber threats in real time or near real time. Depending on the deployment

architecture, IDS can be broadly categorized into two types:

Network-based IDS (NIDS): These systems monitor incoming and outgoing traffic across

network segments. They analyze packet data, protocol behavior, and traffic patterns to

detect suspicious activity [35, 81]. NIDSs are commonly deployed at perimeter points (e.g.,

gateways, firewalls) and are effective in identifying threats such as denial-of-service (DoS)

attacks, port scanning, or brute-force attempts.

Host-Based IDS (HIDS): These systems are installed on individual hosts or endpoints and

9



1.1 Fundamental Concepts

are responsible for monitoring system-level activities such as file changes, process execution,

registry modifications, or user behavior [114, 56]. HIDS is particularly useful for detecting

malware infections, privilege escalations, and unauthorized system access that may not

be visible from the network layer. In terms of detection techniques, IDS are commonly

classified as follows:

Signature-based detection: This approach relies on a database of known attack signatures

or predefined [26, 28]. Although highly effective in detecting previously identified threats,

it cannot detect novel or obfuscated attacks, including zero-day exploits.

Anomaly-based detection: These systems learn the normal behavior of users, systems, or

networks and flag deviations from the learned patterns as potential intrusions. Anomaly-

based methods offer improved generalization to unknown attacks, but often suffer from high

false-positive rates due to the variability of legitimate behavior. Recent advances in artificial

intelligence, particularly machine learning (ML) and deep learning (DL) [6, 40], have

enabled a shift from static signature-based models to data-driven adaptive IDS. ML-based

IDS can learn complex patterns from historical data and generalize to previously unseen

threat variants, making them more suitable for evolving and dynamic attack environments.

However, the practical deployment of such systems remains challenging due to issues such

as data imbalance, adversarial evasion, and real-time performance constraints challenges,

which are directly addressed in the subsequent chapters of this dissertation.

Malware, short for malicious software, refers to any software intentionally designed

to cause damage, unauthorized access, data theft, or disruption to computer systems,

networks, or users [107]. It encompasses a wide range of threat types, but is not limited

to viruses, worms, trojans, ransomware, spyware, and rootkits. As malware continues to

evolve in complexity and stealth, it poses a persistent threat to both individual users and

enterprise infrastructures. Malware detection is broadly categorized into two approaches:

dynamic analysis and static analysis.

Dynamic malware detection involves executing a suspicious file in a controlled envi-

ronment (e.g., sandbox) to observe its behavior in real time. This method is effective

in uncovering run-time behavior, such as network communications, file modifications, or

system calls [103, 69]. However, dynamic analysis is time-consuming, resource-intensive

and susceptible to evasion by malware that uses sandbox detection or delayed execution

techniques.

In contrast, static malware detection analyzes the structure and content of executable

files without executing them [54]. This includes inspecting binary code, headers, metadata,

imported libraries, and embedded resources. Static analysis is computationally efficient and

safer to apply at scale, making it suitable for real-time scanning and host-based endpoint

10



1.1 Fundamental Concepts

protection.

However, it often struggles to detect obfuscated or polymorphic malware unless combined

with robust feature engineering and learning mechanisms. Researchers also focus on the

static analysis of Portable Executable Files (PE) which are the standard binary format

used by Windows operating systems. PE files offer a rich source of structural and semantic

information, including file headers, section tables, import/export functions, and entropy-

based patterns. When extracted effectively, these features provide valuable input for

machine learning models to classify files as benign or malicious [95]. Recent studies have

shown that machine learning models, particularly those trained on large PE datasets, can

achieve high accuracy in malware classification tasks [74, 29, 59]. However, challenges

persist due to the high dimensionality of the extracted features, the imbalance between

benign and malicious samples, and the need for interpretable decision making.

1.1.2 Common Types of Network Attacks

Network attacks represent any malicious activity aimed at violating the confidentiality,

integrity, or availability of computer networks and their resources. A clear understanding of

various types of network attacks is crucial for designing and evaluating intrusion detection

and prevention systems. This section provides an overview of the most prevalent and

impactful categories of network attacks in modern cybersecurity.

Network attacks can be categorized in various ways, such as by intent, technique, affected

OSI layer, or exploited vulnerabilities. In the following, we classify attacks by the most

relevant functional categories for academic research and practical defense.

1. Denial-of-Service Attacks (DoS/DDoS): DoS attacks aim to disrupt network

service availability by overwhelming targets with excessive requests or malicious traffic,

exhausting resources such as bandwidth or CPU [97]. DDoS attacks amplify this effect

by leveraging multiple compromised machines (botnets). Typical techniques include

SYN Flood, UDP Flood, ICMP Flood, HTTP Flood, and amplification attacks (e.g.,

DNS amplification). A famous example is the 2016 Dyn DNS DDoS, which disrupted

major internet services.

2. Scanning and Enumeration Attacks: Attackers gather intelligence through port

scanning, vulnerability scanning, and network mapping. Port scanning identifies

open ports and services (e.g., using nmap), while vulnerability scanning seeks known

weaknesses. Such reconnaissance is often a precursor to further exploitation and is

detectable by intrusion detection systems [7].

3. Spoofing Attacks: Spoofing attacks involve the deliberate falsification or manip-

11



1.1 Fundamental Concepts

ulation of identity information in network communications, enabling adversaries to

masquerade as trusted entities. These attacks undermine the integrity and trust of

network protocols, and often serve as precursors to more sophisticated threats such as

man-in-the-middle (MitM), session hijacking, or data theft.

4. Man-in-the-Middle (MitM) Attacks: occur when adversaries intercept and po-

tentially alter communication between parties without their knowledge. Techniques

include ARP poisoning, rogue access points, SSL stripping, and session hijacking,

leading to credential theft or unauthorized data manipulation.

5. Eavesdropping and Sniffing Attacks: Eavesdropping involves unauthorized in-

terception of network traffic to capture sensitive data. Passive sniffing targets unen-

crypted networks, while active sniffing may leverage ARP poisoning. Tools such as

Wireshark and tcpdump are often misused for this purpose.

6. Replay and Session Hijacking Attacks: Replay and session hijacking attacks

target the integrity and confidentiality of communications by exploiting weaknesses in

session management and authentication mechanisms.

7. Malware-Based Network Attacks: Malware-based attacks involve the deployment

and propagation of malicious software designed to infiltrate, disrupt, or gain control

over systems and networks [79]. These attacks are highly diverse in technique and

impact, often leveraging network vectors for both initial infection and command-and-

control (C2) communications .

• Worms (e.g., WannaCry): Worms are self-replicating programs that spread au-

tonomously across networks by exploiting software vulnerabilities or weak con-

figurations. The infamous WannaCry worm, for instance, exploited a Windows

SMB vulnerability (EternalBlue) in 2017, infecting hundreds of thousands of

systems globally within hours. Worms typically require no user interaction, can

rapidly consume network bandwidth, and often deliver secondary payloads such

as ransomware or rootkits.

• Trojans: Trojans masquerade as legitimate software or files, tricking users into

installing them. Once executed, trojans can open backdoors, allowing remote

attackers persistent access, or serve as droppers for additional malware. Unlike

worms, trojans do not self-replicate but rely on social engineering or software

bundling for distribution.

• Ransomware: Ransomware encrypts files or entire systems and demands payment

(often in cryptocurrency) for decryption. Modern ransomware campaigns leverage

12



1.1 Fundamental Concepts

phishing, exploit kits, or exposed RDP services to gain a foothold, and frequently

exfiltrate sensitive data before encryption (double extortion). Notable examples

include CryptoLocker, WannaCry, and REvil.

Modern malware increasingly uses techniques such as encrypted network traffic (e.g.,

over HTTPS or custom protocols), fileless payloads, and multi-stage infections to evade

detection by traditional antivirus and intrusion detection systems.

8. Phishing, Spear Phishing, and Social Engineering Attacks: These attacks

primarily exploit human vulnerabilities to breach technical defenses, often serving as

the initial stage of broader cyberattacks.

9. SQL Injection and Web-Based Attacks: Web applications are frequent targets for

network-based attacks that exploit vulnerabilities in input validation, authentication,

and session management [42].

10. Advanced Persistent Threats (APT): APTs are sophisticated, multi-stage at-

tacks typically orchestrated by organized groups for long-term, stealthy access and

data exfiltration [22]. These often combine social engineering, malware, and lateral

movement, as seen in campaigns such as Stuxnet and SolarWinds.

11. Supply Chain Attacks: Attackers compromise trusted third-party providers (soft-

ware, hardware, or services) to infiltrate target organizations. Notable example:

SolarWinds breach in 2020.

12. Insider Threats: Insiders (employees, contractors) may intentionally or accidentally

leak sensitive data, disable security controls, or aid external attackers. These attacks

are hard to detect due to legitimate credentials and access.

The network attack landscape is continually evolving, with emerging trends including:

• Encrypted Traffic Attacks: Use of TLS/SSL for malicious command-and-control

(C2) and data exfiltration.

• IoT Attacks: Exploitation of insecure devices for botnets (e.g., Mirai).

• Fileless Attacks: Leveraging legitimate tools (e.g., PowerShell) to avoid detection.

• Cloud-Specific Attacks: Misconfiguration and privilege escalation in cloud envi-

ronments.

A comprehensive, multi-layered defense is essential to counter both traditional and

novel threats. Understanding common types of network attacks is foundational for

13



1.1 Fundamental Concepts

Table 1.1: Summary of Common Network Attack Types

Attack Type Technique Impact Detection

Denial-of-

Service

(DoS/DDoS)

Traffic floods, amplifi-

cation

Service unavail-

ability

Rate limiting,

filtering

Scanning & Enu-

meration

Port/vulnerability

scans

Reconnaissance IDS, anomaly

detection

Spoofing IP/ARP/DNS falsifi-

cation

Evasion, redirec-

tion

Authentication,

ARP/DNS

security

Man-in-the-

Middle (MitM)

Interception, SSL

stripping

Data theft, ma-

nipulation

Encryption, cer-

tificate pinning

Sniffing/ Eaves-

dropping

Passive/active traffic

capture

Credential leak-

age

TLS, VPN

Replay/Session

Hijacking

Packet replay, session

ID theft

Unauthorized

access

Token/session

management,

TLS

Malware Propa-

gation

Worms, trojans, ran-

somware

Compromise,

data loss

Antivirus, sand-

boxing

Phishing/Social

Engineering

Deceptive messages,

psychological tricks

Credential theft,

initial access

User training,

email filtering

SQLi/XSS/CSRF Web input manipula-

tion

Data theft, de-

facement

Input validation,

WAF

APT Multi-stage, stealthy

infiltration

Espionage, long-

term theft

Behavior analyt-

ics, EDR

Supply Chain Third-party compro-

mise

Widespread

breach

Vendor manage-

ment, code re-

view

Insider Threat Privileged misuse,

data exfiltration

Confidentiality

breach

Monitoring,

least privilege,

DLP

14



1.1 Fundamental Concepts

building and evaluating intrusion detection and prevention systems. By addressing

both classic and modern attack vectors, researchers and practitioners can better design

comprehensive, resilient cybersecurity solutions. The summary of common network

attack types show as Table 1.1.

1.1.3 Machine Learning in Cybersecurity

Machine learning (ML) has emerged as a core enabler of intelligent cybersecurity systems

due to its ability to learn complex patterns from data and generalize to previously unseen

threats. In contrast to traditional rule-based or signature-based detection mechanisms

[26, 28, 35, 81], which are based on predefined knowledge, ML-based approaches can adapt

to evolving attack behaviors, making them particularly valuable for protecting against zero-

day attacks and obfuscated malware [6, 40, 114, 56]. In the context of cybersecurity, machine

learning techniques have been successfully applied to a wide range of tasks, including:

• Intrusion detection: Classifying network traffic as benign or malicious based on flow-

level or packet-level features.

• Malware classification: Detecting and categorizing executable files as benign or mali-

cious using static or dynamic features.

• Phishing and spam detection: Identify malicious URLs, emails, or messages.

• Behavioral analysis: Profiling user or system behavior to identify anomalies or insider

threats.

Commonly used machine learning algorithms in these domains include:

• Tree-based models: Decision Trees, Random Forests, XGBoost, LightGBM, and Cat-

Boost are widely used due to their robustness, interpretability, and ability to handle

mixed data types. These models perform well on structured tabular data such as

network flows or PE file attributes.

• Support Vector Machines (SVM): Effective for binary classification problems with

well-separated classes, but less scalable for large datasets.

• K-Nearest Neighbors (KNN): Simple and intuitive but computationally expensive in

high-dimensional spaces.

In recent years, deep learning (DL) models have gained traction for more complex

cybersecurity tasks. Convolutional Neural Networks (CNNs), Recurrent Neural Networks

(RNNs), and Autoencoders have been applied to model patterns in raw byte sequences,

logs, and network flows. For example:

15



1.1 Fundamental Concepts

• CNNs can learn spatial patterns in structured inputs or bytecode (e.g., PE headers)

[74].

• RNNs are suitable for sequential data, such as network traffic over time or system

calls.

Despite their power, ML and DL models in cybersecurity face several critical challenges:

• Imbalance dataset: Benign data often outnumber malicious instances in a large amount,

which can cause classifiers to be biased toward the majority class [53].

• Generalization and Overfitting: Models trained on fixed datasets may not be general-

ized to real-world threats or novel attack types [2, 63].

• Interpretability: Many high-performance models act as black boxes, offering little

insight into why a sample was classified as malicious, limiting the trust and auditability

of the analyst.

• Real-time constraints: In operational environments, models must deliver predictions

with low latency and high throughput, requiring careful trade-offs between complexity

and efficiency [63].

Addressing these challenges requires not only algorithmic innovation, but also principled

data processing, model ensemble design, and performance tuning. In this dissertation, we

investigate multiple machine learning pipelines that span boost models, deep neural net-

works, and hybrid ensembles tailored specifically for intrusion and malware detection tasks.

Particular emphasis is placed on handling imbalanced data, optimizing model performance,

and ensuring deployment feasibility in real-time or resource-constrained environments.

1.1.4 Class Imbalance in Cybersecurity Dataset

Class imbalance is a widespread challenge in cybersecurity datasets, particularly in the

domain of intrusion detection. Most real-world traffic traces and publicly available datasets

exhibit a skewed distribution in which benign samples outnumber malicious ones [34].

Moreover, even within malicious categories, certain attack types such as port scanning

or denial-of-service are vastly overrepresented, while advanced or stealthy attack vectors

appear only sparsely.

This imbalance severely affects the training and performance of machine learning (ML)

models [98, 111]. Standard classifiers tend to optimize for overall accuracy, which can lead

to poor recall of minority (attack) classes, undermining the reliability of threat detection

systems. In extreme cases, models may entirely ignore rare but dangerous attack categories

16



1.1 Fundamental Concepts

to reduce overall classification loss. There are two primary dimensions to the imbalance

problem in cyber threat detection:

• Global imbalance: Refers to the disproportionate ratio between benign and malicious

samples. For example, in the CSE-CIC-IDS2018 dataset, benign traffic often consti-

tutes more than 80–90% of the total records.

• Intraclass imbalance: Occurs within the malicious subset, where attacks such as brute-

force login attempts dominate, while more sophisticated threats such as infiltration,

backdoors, or botnet activities are underrepresented.

Various techniques have been proposed to address class imbalance in ML workflows:

• Data-level methods: These include oversampling the minority class (e.g. random

duplication, SMOTE), undersampling the majority class, or a combination of both,

such as Sinha et al. [99] proposed a conventional oversampling procedure to balance

the dataset. The experiment evaluated the CNN-BiLSTM model based on the NSL-

KDD and UNSW-NB15 datasets with 10-fold cross-validation. It achieves an accuracy

of 99.22% and a detection rate of 98. 88% for the NSL-KDD dataset. However,

the experiment only demonstrates cross-validation and does not include independent

test data after execution. However, naive oversampling can cause overfitting, while

undersampling can discard valuable information.

• Algorithm-level methods: Modifications to loss functions (e.g., weighted loss, focal

loss) or ensemble methods like boosting can mitigate imbalance by assigning a greater

penalty to misclassified minority samples. Liu et al. [68] presented a technique to

balance the dataset for network IDS, namely DSSTE. This method used techniques to

balance the dataset for the minority and majority classes. The result of the experiment

of this approach is achieved by 96.99% and 82.84% for the CSE-CIC-IDS2018 and

NLS-KDD datasets, respectively.

• Hybrid approaches: Integrating data balancing with ensemble techniques or meta-

learning strategies can yield better generalization and robustness. For example, Gupta

et al. [43] presented a solution to balance the dataset. This method integrates

DL and ensemble learning algorithms with data-level techniques based on Random

Oversampling (ROS) and SVM-SMOTE. Before data oversampling, they used DNN

to perform binary classification of benign and attack network traffic flow, followed by

the XGB algorithm. They also distinguish between the majority and minority attack

classes. The dataset is then resampled and the RF algorithm is applied to classify the

various minority attack classes.

17



1.1 Fundamental Concepts

Despite these efforts, many solutions fall short in practical deployment due to lack of

semantic quality control over generated samples, insufficient treatment of rare but critical

classes, or poor integration with feature selection and model tuning. These shortcomings

often lead to high false negative rates and an especially dangerous failure mode in intrusion

detection systems (IDS).

1.1.5 Ensemble Learning in Intrusion Detection

Ensemble learning is a machine learning paradigm in which multiple models referred to as

base learners are strategically combined to achieve better predictive performance compared

to any individual constituent [38]. This approach is particularly advantageous in cyberse-

curity, where attack patterns are diverse, constantly evolving, and often subtle enough to

elude single-model detection systems.

The core intuition behind the ensemble methods is that a group of diverse, moderately

accurate models can collectively produce more robust and accurate predictions, especially

when their errors are not correlated [9]. In threat detection contexts, ensemble learning

contributes to:

• Higher accuracy and stability: Reducing overfitting and variance, particularly in small

or imbalanced datasets.

• Improved generalization: Handling a wider range of attack types and data distribu-

tions.

• Resilience to evasion: Mitigating the weaknesses of individual models by relying on

consensus.

There are several ensemble strategies relevant to intrusion and malware detection:

• Bagging (Bootstrap Aggregating): Techniques like Random Forest build multiple

models on randomly resampled subsets of the data and average their predictions,

reducing variance [72].

• Boosting: Methods such as XGBoost, LightGBM, and CatBoost sequentially train

models in which each learner focuses on the errors of its predecessors. These models

are powerful for structured cybersecurity data and have shown superior performance

in malware and intrusion classification tasks [56].

• Voting ensembles: Combine predictions from heterogeneous models (e.g., a CNN and

a decision tree) using hard (majority vote) or soft (probability averaging) voting to

improve overall robustness [38].

18



1.2 Approaches to Threat Detection

• Stacking: A more sophisticated strategy where outputs of several base models are

used as features for a meta-learner. This two-layer architecture can capture complex

relationships between models, often leading to state-of-the-art results [91].

In cybersecurity, ensembles are especially beneficial due to the heterogeneity of feature

types and attack vectors. For example, network intrusion detection may rely on time series

or flow-level features, while static malware analysis may use structural metadata or byte-

level patterns. No single-model architecture can effectively cover all these modalities, but

ensemble strategies can integrate their strengths.

1.2 Approaches to Threat Detection

1.2.1 AI-powered Intrusion Detection

The model concept in ML/DL or AI refers to the mathematical processing of the prediction

Y from the input X. The model’s parameters are factors to learn from data to have a mode

that can make a good prediction. The objective function is to maximize or minimize to

find such parameters.

For intrusion detection based on an AI model, each network traffic flow is modeled by a

vector of features f = [a1, ..., an]. These vectors are analyzed to discover anomalies using

a classification method. Current research in [2, 63] affirms that deep neural networks,

gradient boosting machines (GBM), and gradient boosting are the best methods to predict

intrusion attacks. Thus, we focus on these methods in our research to improve intrusion

detection by deep network traffic analysis.

For boost learning methods, minimizing prediction errors is tactically performed by

introducing a gradient term [40]. Thus, eXtreme Gradient Boosting (XGB) is considered a

typical ML for intrusion detection. XGB uses decision trees as weak learners and combines

their contributions to produce a strong learner. XGB uses an ensemble of K classification

and regression trees, each of which has Ki
E |i ∈ 1..K nodes. The final prediction is the sum

of the prediction scores for each tree:

ŷi = φ(xi) =

K∑
k=1

fk(xi), fk ∈ F, (1.1)

where xi are members of the training set, yi are the corresponding class labels, fk is the

leaf score for the tree kth and F is the set of all K scores for all classification and regression

trees. In XGB, the objective function is created using Taylor’s theorem [18],

obj(t) =

n∑
i=1

[
mift(pi) +

1

2
cif

2
t (pi)

]
+ Ω(ft) (1.2)

19



1.2 Approaches to Threat Detection

where mi and ci are the inputs. The result of the objective function is a tree that adds

itself to the model.

The GBM is also another typical ML for intrusion detection. It was the first version of

a gradient-boosting ensemble that adopted a forward learning strategy. Trees are created

sequentially, where subsequent trees rely on the outcomes of the preceding trees. Generally,

GBM is accomplished through the iterative construction of a set of functions f0, f1, ..., f t,

given a loss function Ω(yi, f
t). Suppose that function ft has been constructed; we can

optimize our estimates of yi by discovering another function f t+1 = f t + ht+1(x) such that

ht+1 diminishes the estimated value of the loss function.

On the other hand, DL is suitable for modeling complex nonlinear relationships by

learning multiple data representations corresponding to different levels of abstraction. A

DNN consists of several layers: input, hidden, and output. These layers are established

for feature extraction and transformation. It is a promising method for detecting network

attacks [39]. In DNN architecture, several activate functions have been proposed and used,

including:

Sigmoid =
1

1 + e−x
; Softmax =

exi∑
j e

xj
(1.3)

Hyperbolic tangent = 1−e−2x

1+e−2x ;ReLU = max{x, 0} (1.4)

The ReLU (Rectified Linear Unit) has the advantage of efficiently training large datasets

among these functions [105].

Thus, each MD/DL or AI model has its advantage. The combination of several AI

models allows us not only to improve the quality of intrusion detection but also to prevent

spoofing attacks such as adversarial attacks.

Ensemble learning is a well-known technique for improving performance and reducing

variance by training multiple models and combining their predictions to produce the optimal

outcome. It is also an approach that combines multiple machine learning models into

a more efficient solution than any single algorithm [18]. The ensemble techniques are

fundamental or advanced. The fundamental ensemble methods consist of Max voting,

Averaging, and Weighted Average, in which different algorithms are trained on the data,

and after averaging, more powerful models are produced. Among the advanced techniques

for ensembles, stacking, bagging, boosting, and combining [57].

1.2.2 AI-powered Malware Detection

In malware detection, current approaches focus on combining pattern matching and AI-

powered analysis in PE files [89, 96, 107]. This study focuses on the detection of malware

20



1.2 Approaches to Threat Detection

embedded in PE files, the standard format for Windows executables. Detecting PE malware

is a challenging task due to the complexity of PE structures, the prevalence of evasion

techniques, and the vulnerability of AI models to adversarial attacks, as discussed in the

Introduction.

Currently, LIEF [100] is one of the most common tools used for AI-powered malware

detection [88, 37]. Here, the vector encapsulates various structural and metadata attributes

extracted from the PE file (e.g., headers, sections, imports, and other characteristics).

For AI-powered malware detection, define D as the dataset composed of pairs (v, y),

where v is the representation of a feature vector of a PE file and y ∈ {0, 1} is the associated
label (e.g. 0 for benign, 1 for malware), respectively. Thus,D = (v1, y1), (v2, y2), ..., (vM , yM )

with M representing the total number of samples. The problem is to train a generalized

AI model f : Rn =⇒ 0, 1 on the dataset D such that, for any new PE file, its feature

vector v is mapped to a predicted label ŷ = f(v). The goal is to maximize the accuracy of

f while generalizing well beyond the training dataset, thus enabling the reliable detection

of malware in unseen PE files.

To achieve this, various ML techniques can be employed, including supervised learning

algorithms such as decision trees, support vector machines, or neural networks. Addition-

ally, feature set optimization and engineering play a crucial role in improving the model’s

performance by ensuring that the most relevant characteristics of the PE files are utilized

for accurate predictions. Currently, CNN, XGB, CBT, and GBM are typical AI models

used to predict intrusion attacks [40, 28, 56, 110]. Thus, we focus on these methods in our

research to improve malware detection through PE file analysis.

1.2.3 Handling Imbalanced Datasets

The quality of the dataset impacts the performance when ML/DL is applied for intrusion

detection. In general, most well-known datasets for intrusion detection have a much lower

number of attacked flows than benign flows. A class with higher samples is called a

‘majority’ in ML classification issues. Moreover, the inverse, a class with small samples,

is considered a ‘minority class’. Using unbalanced datasets usually has terrible effects on

both the training phase and subsequent prediction [93, 109].

Thus, we should balance datasets in ML to improve the quality of the training dataset.

In imbalanced data handling, under-sampling the majority class is a conventional plan

of operation. Then, oversampling techniques followed by undersampling can be used to

balance the datasets. Some well-known and widely used techniques can be considered

to tackle the imbalance problem, such as the synthetic minority oversampling technique

(SMOTE) and edited closest neighbors (ENN) [71, 93]. Applying these methods can clean

21



1.3 Related Work

or reduce the noise for the majority classes and generate more realistic samples for the

minority classes in training datasets.

1.3 Related Work

1.3.1 Deep and Boosting Learning for Intrusion Detection

DL approaches effectively detect network attack associations within raw samples, feature

learning, and classification tasks. Many DL techniques have implemented IDS in the

last few years [50, 77, 33]. DL is used in real-time environments for several studies on

network attack detection. For example, Bontemps et al. [19] propose a collective real-time

anomaly detection model based on neural network learning and feature operation. Their

method involves using typical time series data to train an LSTM RNN, followed by a live

prediction for each time step. An approach for NIDS based on a hierarchical and dynamic

feature extraction framework (HDFEF) wasproposed by Li et al. [65]. They defined a

network activity as a series of packets using various network traffic flows. The distribution

of the feature representations of several temporally associated network packets is then

dynamically adjusted with an attention mechanism in a hierarchical network model. The

final discriminant vectors are then obtained and utilized for classification after combining

the vectors from the multi-space mapping. The precision of the HDFEF on the CSE-CIC-

IDS2018 dataset is 99.05%.

Alrawashdeh et al. [11] proposed a DL method for anomaly detection using a Restricted

Boltzmann Machine (RBM) and a deep belief network. Their method involved creating

unsupervised feature reduction using a one-hidden-layer RBM and then passing the weights

from this RBM to another RBM to create a deep belief network. With the NSL-KDD

dataset, they were 97.91% accurate. In addition, Jayalaxmi et al. .[51] introduce the IDS

framework known as PIGNUS, which combines an effective feature mapping method with

a cascade model. The PIGNUS combines the cascade forward back propagation neural

network for classification and attack detection with Auto Encoders to choose the best

features. The cascade model creates an accurate categorization using related links from

the input layer to the output layer to identify typical and aberrant behavior patterns.

The experiment result from PIGNUS reaches 99.02% accuracy for the NSL-KDD dataset.

Aldarwbi et al. [8] offer a system that transforms the netowrk traffic flow features into

waves and leverages advanced audio/speech recognition DL-based methods such as LSTM,

Deep Belief Networks (DBN) and CNN to detect intruders. It achieves the accuracy of

84.82% and 99.41% for the NSL-KDD and CIC-IDS2017 datasets, respectively. In other

ways, the authors used the Firefly Optimization (FFO) technique to detect incursion and

22



1.3 Related Work

the Probabilistic Neural Network (PNN) to categorize categories based on the NSL-KDD

datasets [85]. The proposed approach achieves an accuracy of 98.99%.

Qazi et al. [87] presented a hybrid IDS framework using a convolutional recurrent neural

network (CRNN) to detect network threats. This method merges an RNN with a CNN in

which various RNN layers follow two convolutional layers. The output is then fed into fully

connected, flattened, and SoftMax layers, which enable the model to detect and classify

traffic. The experiment results on the CSE-CIC-IDS2018 dataset reach 98.90% accuracy.

In addition, Ren et al. [92] employed CNN, and the Attention mechanism mix to construct

a CA Block focused on local spatiotemporal feature extraction, using Equalization Loss v2

(EQL v2) to raise the minority class weight and balance the learning attention on minority

classes. The accuracy of the experiment’s results for the NSL-KDD and UNSW-NB15

datasets is 99.77% and 89.39%, respectively.

Moreover, Ghanbarzadeh et al. [36] proposed a method that uses the Multiobjective

Quantum-inspired Binary Horse Herd Optimization Algorithm (MQBHOA) for IDS. This

technique implements the Horse Herd Optimization Algorithm (HOA) metaheuristic opti-

mization algorithm, a robust algorithm inspired by nature. The method achieved 99.0%

and 99.78% of the accuracy of the NSL-KDD and CSE-CIC-IDS2018 datasets, respectively.

In another method, Al et al. [7] offers a new classification-based NIDS on network flow

traffic that generates huge amounts of data. The suggested system combines a hybrid

DL (HDL) network composed of a CNN and an LSTM for a better IDS. In addition,

data imbalance processing consisting of the SMOTE and Tomek-Links sampling methods

termed STL was utilized to mitigate the effects of data imbalance on system performance.

The accuracy of the proposed method in binary classification was 99.17% and 99.83% in

multiclass classification.

Since the XGB outperforms other well-known algorithms in a single ML, its popularity

is rising .[4]. Verma et al. .[104] recently suggested a technique for IDS that combined the

XGB algorithm with K-Means clustering. For the NSL-KDD dataset, the experiment result

has an accuracy of 81.2%, 82.38%, and 84.25%, and for the ANN, SVM, and XGB models,

respectively. Furthermore, Devan et al. .[27] propose a strategy for enhancing NIDS that

blends DNN with XGB. This approach uses the XGB technique for feature selection, and

the experiment results are 97.60% accurate. Numerous dual-ensemble techniques involving

fine-tuned CBT algorithms, such as XGB, CBT, LightGBM, and GBM, are fully assessed

utilizing publicly available data sets, such as UNSW-NB15 and NSL-KDD. Louk et al. [72]

presented a dual ensemble model by blending two current ensemble methods: bagging and

CBT. The results of the experiment show that the presented technique achieves 94.66%

accuracy.

23



1.3 Related Work

Golchha et al. [38] present an attack detection framework for IIoT utilizing the voting-

based ensemble learning method. This work includes an ensemble of current and classical

ML approaches, including a histogram gradient booster, CBT, random forest (RF), and a

hard-voting classifier. The result of the experiment reaches 99. 85%, 97. 90%, and 98. 83%

precision for CBT, HGB, and RF, respectively. Moreover, Nazir et al. [82] suggested a

wrapper-based feature selection approach called ‘Tabu Search - Random Forest (TS-RF).’

The Tabu search is used as a search technique, whereas the RF is used as a learning process

for IDS. The suggested model achieved an accuracy of 83.12% for the UNSW-NB15 dataset.

In another approach, Hammad et al. [47] present a method to categorize network attacks

called Multinomial Mixture Modeling with Median Absolute Deviation and Random Forest

Algorithm (MMM-RF). This approach uses t-SNE to minimize data dimension, Correlation

Feature Selection (CFS) to analyze the most important factors affecting network traffic, and

SMOTE combined with Random Under-Sampling to control imbalance on the CSE-CIC-

IDS2018 dataset. It has a 99.98% accuracy rate.

1.3.2 Deep and Boosting Learning for Malware Detection

Neural network (NN) approaches effectively detect malware and network attack associations

within raw samples, feature learning, and classification tasks. Numerous NN techniques

have been implemented in the last few years [50, 77, 33]. Some studies on attack detection

employ DL in a real-time environment. For example, Divakarla et al. [29] presented a simple

DNN-based Windows malware detection system that achieves a test accuracy of 96.76%.

Moreover, the authors also performed an improved offensive generative model based on

GAN to make the current DNN-based system accurate at 97.42%. This work demonstrates

how the combination of DNN and rigorous static analysis aids in the development of a

malware detection system, allowing it to learn complex features with a larger number of

layers and more data.

Liu et al. [70] propose a generic ML-based visualization method for malware detection

named Visual-AT. In addition, it uses the AT technique to detect and analyze malware

that was initially difficult to identify, as well as potential variants, using transformed image

data and two ML models. Visual-AT achieves up to 97.73% accuracy for the EMBER 2018.

In [74], Marais et al. propose a malware detection model that transforms binary files into

grayscale images, achieving 88% accuracy and 85% precision for EMBER 2018 in detecting

packed or encrypted samples.

Moreover,Rigakia et al. [94] also came up with a way to train different kinds of surrogate

model and sampling strategies to steal standalone ML models and four antivirus systems.

This method presented a dual FFNN architecture, achieving the precision 98.02% for EM-

24



1.3 Related Work

BER 2018. In [59], Lad et al. propose a model that focuses on the efficient extraction and

classification of feature of PE files. They perform feature extraction, data standardization,

and data cleaning techniques to address imbalances and impurities in the dataset. Using

the EMBER dataset (2017 and 2018), they extracted 2,381 features and trained a deep

learning (DL) model with dense and dropout layers. Their model achieved 97.53% and

94.09% accuracy, with 98.85% precision.

XGB often achieves faster training and inference times compared to other commonly

used ML algorithms, such as Random Forest or SVM, when applied as standalone models

[84]. Recently, Devan et al. [27] presented a method that uses the XGB technique for

feature selection followed by a DNN and gets 97.60% accuracy. In addition, Mimura et

al. [76] proposed a method for malware detection on PE files using printable characters

using two language models for feature extraction and ML. The author uses the latest FFRI

dataset between 2019 and 2021 to evaluate the method. According to the results, the

XGB model achieves an accuracy of 99.0%, and the most suitable mix was Doc2Vec and

multilayer perceptron, which achieved an F1 score of 98.10%. Each run time showed an

almost linear increase with increasing dataset size.

Moreover, Alani et al. [76] introduced a lightweight obfuscated malware detector based

on explainable ML techniques. The authors used the feature selection method (RFE) to

reduce the number of features while effectively maintaining high accuracy. This method

improved system efficiency when evaluated using the MalMem2022 dataset and achieved a

remarkable accuracy of more than 99. 8%.

Despite the fact that many proposed ML/DL techniques have improved the development

of IDS, they fail to achieve excellent performance, which consists of a low false alarm rate

and a high detection rate. One of the explanations why the majority of these works disregard

the imbalanced data in IDS datasets.

1.3.3 Data Augmentation

Researchers recently proposed several methods to improve the quality of datasets for train-

ing ML or DL models. For example, to balance the dataset in NIDS for industrial IoT,

Zhang et al. [112] propose PWG-IDS based on WGAN with a gradient penalty to generate

samples from minority class. The proposed reduces the number of iterations and generates

more realistic sample data than GAN, using LightGBM for the classification algorithm.

The experimental findings on the NSL-KDD and CSE-CIC-IDS2018 datasets demonstrate

an accuracy of 99% and 96%, respectively.

Sinha et al. [99] proposed a conventional oversampling procedure to balance the dataset.

The experiment evaluated the CNN-BiLSTM model based on the NSL-KDD dataset achiev-

25



1.3 Related Work

Table 1.2: Summary of Related Works based Intrusion Detection

Method Venue Approach Dataset Acc(%)

RF+

miniVG-

GNet [68]

IEEE Access

2020

Combination of K-Means and ENN to

balance dataset then RF+ miniVGGNet

to detect intrusions.

NSL-KDD,

CIC-

IDS2018

82.84,

96.99

WGAN+

LightGBM

[112]

Computer

Science 2021

Applying WGAN-GP for data generation

on minority class samples and using

LightGBM for the classification.

NSL-KDD,

CIC-

IDS2018

99.00,

96.00

MMM-RF

[47]

Computer &

Security 2022

Use CFS to analyze network traffic,

T-SNE to minimize data dimension, and

SMOTE to imbalance the

CSE-CIC-IDS2018 dataset.

CIC-

IDS2018
99.98

CNN, DBNs,

LSTM [8]

Computers and

Electrical

Engineering

2022

Transforms the traffic flow features into

waves and utilizes advanced audio/speech

recognition deep-learning-based

techniques to detect intruders.

CIC-

IDS2017,

NSL-KDD

99.21,

84.82

CNN+LSTM

[101]

Digital Com-

munications

and Networks

2023

Used SMOTE to balance abnormal

traffic, CNN to extract deep features,

then CNN-LSTM to detect intrusions.

UNSW.NB15,

CIC-

IDS2017,

NSL-KDD

99.21,

99.32,

98.45

FFO+PNN

[85]

Alexandria

Engineering

Journal 2023

Used the FFO technique to extract

features and PNN to classify categories.
NSL-KDD 98.99

CNN+EQL

[92]

Computer

Communica-

tions 2023

Used CNN and the Attention mechanism

mingle to form a CA Block focusing on

local spatiotemporal feature extraction

and EQL v2 to increase the minority

class weight and balance the learning

attention on minority classes.

UNSW.NB15,

NSL-KDD,

CIC-

IDS2017,

CIC-

DDoS2019

89.39,

99.77,

99.88,

99.58

PIGNUS [51]
Computer &

Security 2023

Use Auto Encoders to select optimal

features and Cascade Forward Back

Propagation Neural Network for

classification and attack detection.

NSL-KDD 99.02

26



1.3 Related Work

ing an accuracy of 99.22% and a detection rate of 98.88% for the NSL-KDD dataset. How-

ever, the experiment only demonstrates cross-validation and does not include independent

test data after execution. In another approach, Gupta et al. [43] presented a solution to

balance the dataset. This method integrates DL and ensemble learning algorithms with

data-level techniques based on Random Oversampling (ROS) and SVM-SMOTE. Before

data oversampling, they used DNN to execute binary classification of benign and attack

network traffic flow, followed by the XGB algorithm. They also distinguish between the

majority and minority attack classes. Then the dataset is resampled, and the RF algorithm

is applied to classify the various minority attack classes.

In addition, Liu et al. [68] proposed a method to balance the dataset for network

IDS, namely DSSTE, to tackle the class imbalance issue. Authors affirm that the DSSTE

improves the performance of intrusion detection with an experiment result of accuracy:

82.84% on the NLS-KDD dataset and 96.99% on CSE-CIC-IDS2018 compared with other

methods. Some studies concentrate on splitting the training and testing data to enhance

detection quality. In another example, Ullah et al. [101] proposed an IDS using transformer-

based transfer learning for Imbalanced Network Traffic (IDS-INT). It uses SMOTE to

balance abnormal traffic and detect minority attacks, uses CNN to extract features, and

the CNN-LSTM model to detect different types of attacks with an accuracy of 99.21%

for the UNSW-NB15 dataset. In addition, Liu et al. [68] presented a technique to

balance the dataset for network IDS, namely DSSTE. This method used techniques to

balance the dataset for the minority and majority classes. The experiment result of this

approach achieves 96.99% and 82.84% for the CSE-CIC-IDS2018 and NLS-KDD datasets,

respectively. Research concentrates on separating the training and testing datasets to boost

detection quality; for instance, Ullah et al. [101] proposed an IDS employing transformer-

based transfer learning for Imbalanced Network Traffic (IDS-INT). It employs SMOTE to

balance unusual traffic and detect minority attacks, uses CNN to extract features, and

the CNN-LSTM model to detect attacks with an accuracy of 99.21% on the UNSW-NB15

dataset.

Table 1.2 and Table 1.3 presents a comparative summary of state-of-the-art (SOTA)

approaches, evaluated in terms of AI methodologies, approach, datasets used, and reported

accuracy and precision. The analysis reveals that despite recent advancements, the quality

of training datasets remains a limiting factor in achieving consistently high detection rates

for intrusion detection and malware detection. Moreover, both false negative and false

positive rates remain non-negligible across many approaches. These observations underscore

two critical challenges in AI-powered IDS: improving the quality and representativeness of

training datasets, and enhancing the performance and reliability of AI models in practical

27



1.4 Dataset Collection

deployment scenarios.

To address these challenges, this dissertation proposes a unified framework that integrates

data-centric enhancement techniques, robust ensemble learning strategies, and scalable real-

time deployment architectures, as elaborated in the following chapters.

1.4 Dataset Collection

Currently, in intrusion detection, there are several public datasets, such as DARPA (Lincoln

Laboratory 1998-99), CAIDA (Center of Applied Internet Data Analysis, 2002-2016), ADFA

(University of New South Wales, 2013), and NSL-KDD, CSE-CIC-IDS2017, and CSE-

CIC-IDS2018 (Canadian Institute for Cyber Security). We use the following dataset for

experiments to evaluate our methods:

• CSE-CIC-IDS2018 dataset is a large-scale modern intrusion detection dataset devel-

oped by the Canadian Institute of Cybersecurity. It contains realistic network traffic

data with a wide range of both benign and malicious activities, making it widely used

to evaluate intrusion detection methods.

• NSL-KDD dataset is an improved version of the original KDD’99 dataset, providing

balanced samples of normal and attack traffic. It is commonly adopted as a standard

benchmark in intrusion detection research, supporting direct comparison with related

work.

• EMBER2017 dataset is a widely used benchmark dataset for Windows malware de-

tection, containing labeled samples of malware and benign files collected in 2017 and

earlier. It includes both labeled and unlabeled samples to facilitate various evaluation

scenarios.

• EMBER2018 dataset, similar to EMBER2017, comprises labeled and unlabeled Win-

dows binaries collected in 2018. It serves as a large-scale representative data set for

training and testing malware detection models.

• BODMAS dataset is a recent dataset for malware detection, containing tens of thou-

sands of labeled malware and benign samples in numerous malware families. Although

comprehensive, it does not include benign binaries and lacks standardized feature

definitions, presenting certain reproducibility limitations.

28



1.4 Dataset Collection

Table 1.3: Summary of Related Works based Malware Detection

Method Venue Approach Dataset Acc(%)

CNN

[74]

Distributed

Computing and

Artificial Intelligence

2021

The method in this study converts binary

files into grayscale images to detect

malware. The model also integrates an

attention mechanism to identify suspicious

parts within the file.

EMBER

2018
94.00

DNN

[29]

Procedia Computer

Science 2022

This method builds an improved offensive

generative model based on GANs to

strengthen the current DNN-based system.

EMBER

2018
97.42

CNN

[59]

International

Journal of Computer

Network and

Information Security

2022

This method employs feature extraction,

data standardization, and data cleaning

techniques to address imbalances and

impurities within the dataset.

EMBER

2017 &

2018

97.53,

94.09

EII-

MBS

[48]

Computers &

Security 2022

This technique finds patterns in how

instructions relate to each other and turns

this information into vector

representations to classify malware

families.

BODMAS 99.29

XGB-

CATB-

EXT

[80]

Computer, Material

& Continua 2023

The technique in this study utilizes a

model combining supervised and

unsupervised learning to improve malware

detection. Specifically, k-means clusters

the data before a set of ML algorithms

classifies it.

EMBER

2018
96.77

MD-

ADA

[17]

Computers &

Security 2024

This approach combines CNN-based

image embeddings and adversarial domain

adaptation (using GANs) to classify

malware.

BODMAS 99.29

FCG-

MFD

[45]

Journal of Network

and Computer

Applications 2025

This method uses function call graphs and

node2vec along with ideas from NLP to

help classify malware families.

BODMAS 99.28

29



1.5 Evaluation Metrics

1.5 Evaluation Metrics

We use standard metrics computed from the confusion matrix to evaluate the network

attacks detection method, such as accuracy (noted as Acc), Precision (Prec), Sensitivity

(Sens, or Recall/True Positive Rate), False Alarm Rate (FAR, or False Positive Rate),

Recall (Rec), F1 score (F1), etc. The ML models built in this paper are all multilabel

classification models [30]. Therefore, the metrics to evaluate model performance need to

be made based on the overall assessment of all the n results of predicted labels ŷi and real

labels yi, where i ∈ [1...n]. The following overall formulas compute these metrics:

Acc =
1

n

n∑
i=1

|yi ∩ ŷi|
|yi ∪ ŷi|

Prec =
1

n

n∑
i=1

|yi ∩ ŷi|
|yi|

Rec =
1

n

n∑
i=1

|yi ∩ ŷi|
|ŷi|

F1 =
1

n

n∑
i=1

2|yi ∩ ŷi|
|yi|+ |ŷi|

To measure the overall performance of intrusion detection, we also use the false positive

rate (FPR) and false negative rate (FNR), computed by the following formulas:

FPR =
False Intrusion Number

Total Number of Benigns

FNR =
False Benign Number

Total Number of Intrusions

To evaluate the efficacy of multiclass classification, we also use the Receiver Operating

Characteristic Curve Area (AUC) [60]. It is worth noting that with numerous intrusion

classes, the One-vs-Rest (OvR) strategy is more suitable than One-vs-One to be used to

calculate the AUC. OvR can also handle class imbalances since it treats each class inde-

pendently and does not require balanced class distributions. Thus, we compute the AUC

for each class individually against the rest of the classes and then average the individual

AUC scores to obtain the multiclass AUC.

AUC =
1

n

n∑
i=1

AUCi

1.6 Research Gaps and Approach Direction

Despite growing interest in AI-powered security solutions, several unresolved challenges

hinder the development of scalable, interpretable, and resilient threat detection systems.

Based on an in-depth review of current research and practical system evaluations, this

dissertation identifies and addresses three key research gaps:

30



1.6 Research Gaps and Approach Direction

• Research Gap 1: Most real-world intrusion detection datasets suffer from severe class

imbalance, where minority attack classes are underrepresented and difficult to learn.

Conventional oversampling techniques, such as SMOTE, focus on increasing the sample

volume without guaranteeing semantic quality, often introducing noise. Addition-

ally, network flow/PE files exhibit high-dimensional feature spaces with redundant or

weakly relevant attributes, further complicating model training and inference efficiency.

Approach Direction (Chapter 2): To address these limitations, we propose augmenta-

tion dataset methods that enhances both the quantity and quality of training dataset,

optimizing feature space. Our method includes:

– Using WGAN to generate new and realistic for minority-class samples;

– KMeans-based filtering to select semantically meaningful samples from training

datasets;

– SHAP-based feature selection to reduce dimensionality while preserving important

features;

– Evaluation of ensemble-based AI models on optimized data to validate gains in

accuracy, F1-score, recall.

The methods are validated on benchmark datasets such as CSE-CIC-IDS2018, confirm-

ing its effectiveness in improving detection performance under unbalanced datasets.

• Research Gap 2: Although recent studies have proposed various approaches to opti-

mize machine learning models for intrusion detection, model optimization remains a

persistent challenge in machine learning applications. This can be achieved through

different methods, such as parameter tuning or combining multiple models to minimize

misclassification and improve the predictive performance of the models.

Approach Direction (Chapter 3): We design a mutual deep+boosting ensemble in-

ference pipeline that leverages the complementary strengths of diverse models to

enhance overall performance and reduce vulnerability to model poisoning. This chapter

contributes:

– Development of base models (CNN, XGBoost, LightGBM, CatBoost) trained on

augmentation training set/ optimized feature sets;

– Mutual of predictions via soft voting and stacking to improve the perfomance and

reduce poisoning model attacks.

– Extensive empirical evaluation across malware detection and intrusion classifica-

tion tasks, measuring both performance metrics and inference consistency; This

31



1.7 Summary

ensemble structure improves classification robustness and offers a modular foun-

dation for deployment in dynamic cyber environments.

• Research Gap 3: Despite recent advances, most IDS models remain unsuitable for high-

throughput environments due to computational bottlenecks, static detection logic, and

lack of adaptive flow control. Traditional detection frameworks are unable to meet

real-time latency constraints or scale to modern enterprise or ISP-level networks.

Approach Direction (Chapter 4): We propose a scalable and low-latency intrusion

prevention system called NetIPS, built upon parallelized deep and boosting models

integrated with flow-sensing optimization and sandbox analysis. Key features include:

– An AI-powered detection core using parallel ensemble learning;

– A flow-sensing strategy that selectively triggers inference based on dynamic traffic

characteristics;

– A hunting malware method that detect malware files transfer between network.

– A user-space deployment model that minimizes kernel overhead and supports real-

time decision-making;

– Evaluation on emulated network environments to assess performance under strict

latency constraints.

This architecture closes the gap between academic detection models and operational

requirements, supporting a proactive and scalable threat response.

Collectively, these three research directions form a cohesive strategy to advance the

state of AI-powered cyber threat detection. By addressing dataset, model, and system-

level limitations, the dissertation contributes to the design of next-generation detection

frameworks that are not only accurate and robust, but also explainable and deployable in

real-world scenarios.

1.7 Summary

This chapter has established the foundational context for this dissertation by highlighting

the motivation to develop intelligent and resilient AI-based cyber threat detection sys-

tems. It began by reviewing the increasing scale and complexity of modern attacks and

underscored the shortcomings of traditional intrusion and malware detection approaches,

especially their inability to cope with class imbalance, high-dimensional feature spaces, lack

of interpretability, and challenges in real-time deployment.

32



1.7 Summary

In addition, we also introduced fundamental concepts in intrusion detection, malware

classification, feature extraction, and the application of machine learning and deep learning

in cybersecurity. Through an extensive survey of recent literature, it highlighted both the

progress and persistent gaps in current research, particularly regarding data imbalance, the

limitations of single-model approaches, and the absence of scalable real-time AI solutions.

By synthesizing these issues, Chapter 1 identified the key research challenges and framed

them as a roadmap for future contributions to the dissertation. Specifically, it defined three

interrelated research directions: (i) addressing the challenge of learning from unbalanced

and redundant datasets (Chapter 2); (ii) advancing machine leaning model robustness and

detection accuracy via mutual ensemble learning (Chapter 3); and (iii) bridging the gap

to practical deployment by designing scalable, real-time intrusion prevention architectures

(Chapter 4).

In summary, this chapter has identified the key research challenges and objectives in

intrusion and malware detection and outlined the main scientific contributions and research

roadmap of the dissertation. The mapping between these contributions and the correspond-

ing technical chapters has also been presented, providing a clear structure for the remainder

of this work. The next chapter will focus on advanced balancing dataset techniques,

addressing the challenges of class imbalance and feature redundancy through intelligent

augmentation dataset, adversarial sample generation, and feature selection methods that

lay the groundwork for subsequent model development and evaluation.

33



Chapter 2

Enhancing AI-powered Intrusion Detection

with Data Augmentation and Feature

Optimization

This chapter focuses on a key challenge for AI-powered intrusion detection systems: the

imbalance present in machine learning datasets and the difficulty in handling a large number

of features simultaneously. This chapter introduces a novel approach to improving the

quality of the dataset for machine learning, starting with advanced GAN-based techniques

to increase the number of samples for the minority class and selecting the best represen-

tative samples for the majority class. In addition, a SHAP-based feature optimization

method is proposed to identify the most important features for training machine learning

models. However, in the evaluation section, this chapter primarily assesses the quality of

the augmented data, while comprehensive comparisons will be conducted in subsequent

chapters. These enhancements not only aim to “clean” and enrich the training dataset but

also lay a solid foundation for the following chapters, where machine learning and ensemble

models will fully realize their potential on this optimized data platform.

2.1 Problem Statement

In the domain of AI-based cybersecurity analytics, the performance and reliability of

detection systems are highly dependent on the quality and structure of the training dataset.

Two major challenges arise consistently across intrusion detection and malware classification

tasks: (1) severe class imbalance in security datasets and (2) the presence of redundant or

non-informative features in high-dimensional representations.

First, currently, many datasets are used in machine learning and deep learning training,

such as KDD99, DARPA, CAIDA, ADFA, CSE-CIC-IDS2018, etc. [58]. However, the

datasets still have limitations in terms of data quality, such as the difference in the number

of classes, duplication, etc. [2]. Therefore, handling the imbalanced dataset is a challenge

that should be addressed in designing the intrusion detection system using machine learn-

ing/deep learning. In particular, most public datasets in this domain, such as CSE-CIC-

IDS2018 [32] for network traffic and EMBER2018 [13] for malware classification, suffer from

highly imbalanced label distributions. Minority attack types such as SQL injection, U2R, or

34



2.1 Problem Statement

heartbleed often account for less than 0. 1% of the total instances. Traditional oversampling

methods, including SMOTE [23] or ADASYN, often fail to capture the intrinsic structure of

minority samples and risk introducing synthetic noise that degrades classifier performance.

As a result, trained models are prone to high false-negative rates, especially when evaluated

on rare or adversarial samples.

Second, a frequent challenge in AI-powered malware detection is the time required to

learn the features of the program when the number or size of the features is large, or the

number of programs is enormous [53]. Although fewer features may speed up learning,

the detection accuracy is likely to decrease [46]. However, selecting a mix of well-chosen

characteristics makes it possible to achieve reasonable accuracy, a quick learning curve, and

small datasets, although this approach is more complex. The feature spaces extracted from

raw binary files tend to be high-dimensional and noisy. For example, EMBER2018 contains

more than 2,300 static features, many of which are correlated or irrelevant to malware

behavior. Feeding such unrefined data into learning models not only increases the risk of

overfitting, but also inflates training time and hinders real-time inference. Furthermore,

the lack of explainability in deep or ensemble models has become a bottleneck for practical

deployment in security-critical environments.

To address these limitations, this dissertation introduces two complementary

contributions:

• We propose augmentation dataset methods that integrates clustering-based compres-

sion for majority classes and sample generation for minority classes. The augmentation

dataset process is adaptive to feature type and class distribution, with the objective

of producing a balanced and diverse training set while maintaining data fidelity.

• We also develop a SHAP-based feature pruning technique termed the Optimized

Feature Set (OFS), which employs model-agnostic feature importance to reduce di-

mensionality while preserving classifier performance. This method enhances model

interpretability and reduces training/inference overhead across multiple downstream

detection models.

These contributions serve as the foundational input processing components for the

detection systems presented in later chapters. They are experimentally validated in this

chapter using diverse datasets and classifiers and have been shown to significantly improve

the effectiveness and efficiency of AI-based intrusion and malware detection frameworks.

35



2.2 Approach Direction

2.2 Approach Direction

To address the two major challenges of class imbalance and feature redundancy in intrusion

detection datasets, we introduce augmentation dataset methods aimed at enhancing the

learning capacity of AI models in practical cybersecurity contexts. The proposed approach

is designed to simultaneously address the problem of insufficient dataset in minority classes,

select high-quality samples from majority classes, and identify valuable features in datasets

with large numbers of features, issues that are commonly encountered in real-world datasets.

We begin by formally defining the training set RT , partitioned into RTmaj (the n samples

of the majority class) and RTmin (the m samples of the minority class), where the class

distributions are typically highly imbalanced. To improve data quality and class balance,

we first apply K-Means clustering to compress redundant samples in the majority class, as

shown in the following equation:

Smaj =

n∑
i=1

Compress(RTmaj) (2.1)

We generate the minority class using the oversampling technique, then verify and remove

noise (Samplenoise) from the new class samples to increase the number of samples of

minority classes by the following formula:

Smin =

m∑
i=1

Generate(RTmin) \ Samplenoise (2.2)

Finally, we obtain the augmented training set as ATS with the same number as τ of every

class label by the following formula:

ATS = Smaj + Smin (2.3)

In particular, to further improve sample quality, we incorporate a KMeans-based filter-

ing mechanism that clusters most samples and selectively retains those that lie near the

decision boundary, which are more likely to contribute to improved classifier performance.

Moreover, we propose a novel augmentation dataset strategy that is both adversarially

informed and semantically guided. Unlike conventional oversampling techniques such as

SMOTE, which often produce generic and potentially noisy synthetic data, our method

uses Wasserstein Generative Adversarial Networks (WGAN) [14] to generate more realistic

and context-sensitive attack samples. These GAN-based augmentation methods learn from

the underlying structure of minority class instances to synthesize high-fidelity samples that

reflect genuine threat behavior patterns. This ensures that the training set is enriched

not just quantitatively but also qualitatively with examples from minority classes that are

diverse and informative.

36



2.2 Approach Direction

On the other hand, we address the issue of feature redundancy and computational

inefficiency through feature engineering and SHAP-based feature selection. Given the high

dimensionality of network flow data, many features may be irrelevant or even misleading for

model learning. By computing SHAP (SHapley Additive exPlanations) [73] values across

multiple models, we identify the most influential features that consistently contribute to

accurate predictions. This results in a reduced feature set that maintains semantic richness

while lowering model complexity and inference latency. Given an ML model mi to predict

the output y of a data sample x. The Shapley value ϕ
(i)
j for the j-th feature in the data

sample x is calculated by determining the difference between the model prediction with

feature fj included and its prediction without it by Equation 2.4:

ϕ
(i)
j =

∑
S⊆{1,2,...,N}\{j}

|S|!(N − |S| − 1)!

N !

(
mi(xS∪{j})−mi(xS)

)
(2.4)

where N is the number of features; S is a subset of the set of features not containing the

j-th feature; xS is the data sample x containing only the features in set S; xS∪{j} is the

data sample x containing the j-th feature; mi(xS) is the prediction value of the model when

considering only the features in set S; mi(xS∪{j}) is the prediction value of the model when

including the j-th feature.

After computing the SHAP value for each data sample, Equation 2.5 is used to determine

the importance value of feature j over the entire dataset as follows:

Ij =
1

n

n∑
i=1

|ϕ(i)j | (2.5)

where n denotes the number of data samples.

We use k ML models, m1,m2,m3, ...mk, and apply the formula in Equation 2.5 to

calculate the importance score Ikj for each feature j as determined by model mk, where k

ranges from 1 to k. We then identify all features that satisfy the condition Ikj ≥ τ , with τ

being a predefined threshold. Next, we select the features chosen by the individual model.

These features are considered essential for training the ML models. Finally, we reconstruct

the dataset using only the important features. This method creates a new dataset with a

reduced number of features, and we use it to train and test the ML models.

The enhanced datasets both augmented and dimensionally reduced are used to train

a variety of AI models, including deep neural networks and ensemble-based classifiers.

These models are evaluated under multiple performance metrics, such as accuracy, precision,

recall, and F1 score, with a specific focus on improvements in minority class detection. The

results demonstrate that the proposed approach not only mitigates the impact of class

imbalance but also enhances the generalization and stability of the model.

37



2.3 Training Dataset Augmentation

Algorithm 2.1 AugDS: Build the Augmented Dataset

Input: F - Raw Dataset, represented by a list of feature vectors; K - scaling factor

Output: T - Augmented Dataset;

1: L← ComputeLabels(F ) ▷ Get all labels of dataset F

2: F ← Normalize(F ) ▷ normalizing all feature vectors

3: ES = EditedNearestNeighbours(RT, |L|) ▷ determining the easy sets ES by finding

L nearest neighbours samples

4: DS = RT \ ES ▷ difficult set DS is the rest of RT

5: Majors,Minors← ComputeMajMin(DS)

6: Smaj ← ∅, Smin ← ∅
7: for each M ∈Majors do ▷ Compression Step

8: C ← Clustering(M, |L|) ▷ computing the centroids C of |L| clusters by using

KMeans algorithm

9: M ← Compress(M,C, τ) ▷ compressing majority samples using centroids C of L

clusters

10: Smaj ← Smaj ∪M

11: end for

12: for each M ∈Minors do ▷ Zooming Step

13: for each m ∈ range(K,K + number
NSmin

) do ▷ Zooming Step, NSmin
is number sample

in Smin.

14: M ← Zoom(m) ▷ zoom range is [1− 1
K
, 1 + 1

K
] on both continuous and

categorical features.

15: Smin ← Smin ∪M

16: end for

17: end for

18: T = ES ∪ Smaj ∪ Smin ▷ synthese of new dataset T

19: return (T )

2.3 Training Dataset Augmentation

2.3.1 Difficulty-Aware-based Data Augmentation

With vast datasets about network traffic, the number of network attacks is typically

extremely low, resulting in a significant disparity between the labeled dataset about cyberat-

tack types and the benign network traffic. Insufficient network attack samples significantly

hinder the development of predictive models. In addition, the amount of benign network

traffic is excessive. It makes the model too difficult to predict, leading to a high rate of

false positives.

To improve the performance of ML models, we must minimize the amount of benign

38



2.3 Training Dataset Augmentation

network traffic and increase the number of network attack patterns used in the training

phase. It helps the ML model improve accuracy and avoid overlearning about a specific

label. Consequently, we propose a method based on the concept of the DSSTE algorithm

proposed by [68] to augment the training dataset. Our algorithm is named AugDS and is

shown in Algorithm 2.1.

In particular, the algorithm is specifically designed to address two core challenges com-

monly found in network intrusion datasets: severe class imbalance with an overwhelming

number of benign samples compared to rare attack instances and the presence of redundant

data in the majority class. The algorithm proceeds in several main phases, employing

a partitioning strategy based on sample difficulty, and subsequently applying tailored

compression or augmentation techniques for each group.

Initially, the entire raw dataset was normalized to ensure feature compatibility and

facilitate subsequent operations such as clustering and distance calculations. The algorithm

then uses the Edited Nearest Neighbors (ENN) method to partition the dataset into two

subsets: the ’easy set’, which contains samples whose labels are consistent with those of

their nearest neighbors (and are thus easy for machine learning models to classify), and

the ’difficult set’, which consists of samples lying close to class boundaries or frequently

misclassified by conventional learners.

Within the difficult set, Algorithm 2.1 further distinguishes between majority and mi-

nority classes based on their sample counts. For the majority classes, a data compression

procedure is applied. This involves using the KMeans clustering algorithm to group similar

samples and represent each group by its centroid. In this way, redundant benign samples

are reduced to a manageable, representative subset, which helps mitigate overfitting and

excessive bias toward the majority class.

In contrast, for minority classes, the algorithm adopts a “zooming” strategy. Here,

new synthetic samples are generated for each original minority-class sample by introducing

controlled perturbations to their feature values within a specified range, determined by the

scaling factor K. This ensures that the minority classes are enriched with realistic and di-

verse examples, enhancing the model’s ability to recognize rare or emerging attack patterns.

Importantly, this augmentation is designed to maintain the original data distribution and

avoid the introduction of artificial noise.

Finally, Algorithm 2.1 synthesizes the augmented dataset by combining the easy set re-

tained in its original form to preserve representative characteristics of all classes, compressed

majority samples and zoomed minority samples. The resulting training dataset is therefore

more balanced, rich in information, and tailored to support robust machine learning models

for intrusion detection. By focusing on hard-to-classify regions and adaptively enhancing

39



2.3 Training Dataset Augmentation

Normalization

Minority classes

WGAN
Sampling

New samples

ValidationBackpropagation
minimize error

Raw dataset

Raw train dataset

Testing set

Training set

K-Means-based
Compression

Majority classes

RandomSplit

Figure 2.1: Architecture of AWGAN-based Data Augmentation

class balance, AugDS substantially improves detection performance, especially for rare but

critical attack types, while also reducing the risk of overfitting on the dominant benign

traffic.

2.3.2 AWGAN-based Data Augmentation

In another approach, to solve the issue of the unbalanced dataset in IDS, our augmented

WGAN method, AWGAN, generates realistic samples for minority classes using WGAN.

In the meantime, the majority classes in a large number of samples, such as benign

flows, can occasionally hinder the performance of ML models. Therefore, it is essential

to maintain significant samples in the majority classes. We also use the K-Means algorithm

in conjunction with WGAN to eradicate ineffective samples. Consequently, the AWGAN

is depicted in Figure 2.1 and is described formally in Algorithm 2.2. In this algorithm, to

augment the training set, we perform the following steps:

Step 1 - Dataset Reprocessing: carry out dataset normalizing; eliminate noise and

duplicated raw data on the dataset; and split it into the training and testing sets, preset

by a ratio of 7:3, respectively. We use τ as a constant to determine the maximum samples

of the label class in the training set. The testing set is used for the evaluation in the DL

models of our project.

Step 2 - Finding Majority and Minority Classes: The training set is separated into the

majority class and minority class from the initial/original train dataset. We compressed

the majority class and utilized the oversampling approach to create data for the minority

class. Consequently, the total number of classes in the training set is equal.

Step 3 - Compressing Majority Classes : we reduce the number of the majority class

by proposing a method inspired by the idea of the DSSTE [68] algorithm to augment the

40



2.3 Training Dataset Augmentation

Algorithm 2.2 AWGAN: Create the Training & Testing Sets by Augmented WGAN

Input: F - Raw Dataset, represented by a list of feature vectors.

r - ratio between training and testing sets; default is 7:3.

τ - maximum samples in a label.

Output: T - Training Set; V - Testing Set.

1: L← GetLabels(F ) ▷ Get all labels of dataset F .

2: F ← Normalize(F ) ▷ Normalize all feature vectors.

3: (RT, V )← SplitTrainTest(F, r) ▷ Split F randomly into the raw training set RT and

testing set V with ratio of r.

4: (Smaj, Smin)← GetClasses(RT ) ▷ Determine majority classes (Smaj) and minority

classes (Smin) from RT

5: T ← ∅
6: for each M ∈ Smaj do ▷ Compression each majority class

7: C ← Clustering(M, |L|) ▷ Compute the centroids C of |L| clusters by using ENN

8: M ← Select(M,C, τ) ▷ Compress majority samples using C of L clusters

9: T ← T ∪M

10: end for

11: for each M ∈ Smin do ▷ Generate samples for minority classes by WGAN

12: while |M | < τ do

13: S ← WGAN Sampling(M) ▷ Generate new samples

14: M = Denoise(M,S) ▷ Eliminate noise samples

15: end while ▷ Repeat until get enough samples τ .

16: T ← T ∪M ▷ Add realistic samples to T

17: end for

18: return (T, V )

dataset. We use the Edited Nearest-Neighbor (ENN) algorithm to obtain the majority of

labels that are frequently difficult to classify due to their proximity. Using a clustering

algorithm, we then compressed every label class in the majority class to reduce the number

of label classes. We eventually obtain τ for each label class in the majority class and append

the majority class samples to the training set.

Step 4 - Augmenting Realistic Data for Minority Classes : We balance the minority class

using the oversampling model based on WGAN[14], which uses attack data to generate

simulated attack samples. Then we validate these new samples using the train & test model

built from the actual dataset to test the output of the sampling model. Depending on the

result of the testing phase for the new attack samples as a testing set, the oversampling

model will be backpropagation to minimize error. It also removes the noise, which is new

attack samples that failed to be classified. This step will repeat until the train & test model

41



2.4 Feature set Optimization

can’t define actual and simulated attack data, and the number of every label class in the

minority class is equal to τ . Moreover, this step generates more realistic attack samples,

and these new attack samples may be similar to those for other attacks.

Step 5 - Results : Finally, we obtain a new training set, which contains the number of

every label class that is the same as τ , and use this training set to train and the testing set

in Step 1 to test our models. Thus, it helps us to obtain a better AI model.

2.4 Feature set Optimization

2.4.1 Feature Extraction and Cleaning

In ML, feature extraction and cleaning are crucial steps to choose and improve a subset of its

features. This step can drastically reduce computational costs and eliminate pointless data

processing during training. Generally, datasets contain raw, unclean, or imbalanced data.

There are also duplicate records and categorical data. Therefore, we need to preprocess all

datasets by cleaning, removing records, and transforming categorical data. These records

can negatively impact the training process, often leading to model overfitting. We adopt

simple methods to handle missing values of the attributes, such as removing rows containing

null values or duplicating entries.

In our method, assuming that the input Do is a list of records, where each record r is

a list or a tuple of values by columns, we initialize an empty list Sr ← {} to store the

unique records. Then iterates through each record in the input data, and if the record is

not already in the Sr list, it adds the unique record, r, to that list. Finally, it returns the

list Do [Sr], which contains only the unique records from the input data.

In addition, the set of attributes in the training samples also influences the quality of

the AI models. Therefore, eliminating redundant attributes that do not affect malware

detection is one of the essential tasks. We used an AutoML toolkit called AutoGluon [31]

to analyze, evaluate, and remove redundant attributes.

2.4.2 Feature Vectorizing

We must transform raw data, often in JSON format, into numerical vectors to prepare

dataset features for AI model training. Many famous models, such as the GBM family

model, only accept input as a number vector, making the latter unsuitable for training

AI models. Therefore, we perform vectorization to obtain binary format features and

store them in CSV for future use. Since most of the features of the dataset have unique

values and cannot be easily categorized, the hashing technique is suitable to retain the data

42



2.4 Feature set Optimization

characteristics [5]. Consequently, we employ the feature hash technique in this work to

vectorize the features into a feature vector. First, we will need to define two hash functions:

• The kernel hash h : T → {1, 2, ..., n}. The kernel hash function h maps tokens from

the set T to a set of indices from 1 to n. It is defined as follows:

h(ti) = index if ti ∈ T

where ti is the i
th token in set T ; index is the index of the token ti in the set of indices.

• The sign hash ζ : T → {−1,+1}. The sign hash function ζ maps tokens from the set

T to the set {−1,+1}. It is typically used to represent positive and negative values of

tokens with different sign values. Specifically:

ζ(ti) =

−1 if ti has a negative or zero value

+1 if ti has a positive value

where ti is the ith token in the set T .

Then we define the feature hashing function. The Feature Hashing function ϕ transforms

sequences of tokens from set T ∗ into a feature vector in the n-dimensional real space Rn.

It is defined in Equation 2.6 as follows:

ϕ : T ∗ → Rn, ϕ(t1, ..., tk) =

k∑
j=1

ϕ(tj) (2.6)

where T ∗ is the set of all finite strings that contain tokens in T ; t1, ..., tk are tokens in the

sequence; and k is the number of tokens in the sequence.

The Feature Hashing function can be equivalently represented by Equation 2.7 as follows:

ϕ(t1, ..., tk) =

n∑
i=1

(
∑

j:h(tj)=i

ζ(tj))ei (2.7)

where ζ(tj): Sign value of jth token; ei: Unit vector with value 1 at the index i and 0

elsewhere; h(tj): Index of the jth token mapped by the kernel hash function h; and n:

Number of indices.

We label and encode all category characteristics, except the last characteristic, before

applying the normalization procedure to make ML readable. The label encoding transforms

the categorical features into numerical values (the integer values begin at ‘0’). We use

the Keras library to encode categorical data into numerical data. Categorical features

are converted to binary features that are “one-hot” encoded, which means that a feature

represented by that column receives a 1 if it is one of the characteristics converted to binary

features. Otherwise, it gets 0.

43



2.4 Feature set Optimization

2.4.3 Feature Normalization

Suppose the feature values are more similar in the ML algorithms. If the data points or

feature values are highly dissimilar, it will take longer for the algorithm to understand

the data, resulting in lower accuracy. To address this issue, we used StandardScaler from

the Scikit-Learn library to normalize the feature range. It is particularly effective for

normalizing datasets with numerous features, outperforming other methods such as Min-

Max, Z-Score, and Robust Scaler. Normalization is used in the output obtained after the

label encoding is applied to ensure that each independent feature has a mean of 0 and a

standard deviation of 1, expressed by Equation 2.8 as follows:

Xnew =
X − µ

σ
(2.8)

where X is the original feature sample, Xnew is the standardized feature sample, µ is the

mean of the feature values, and σ is the standard deviation of the feature values.

Normalizing the features centers them around zero with a unit standard deviation,

facilitating the ML algorithm’s learning process. This normalization technique helps speed

up convergence and improve the model’s overall performance.

2.4.4 SHAP-based Feature Set Optimization

Our method takes as input the training data X, a matrix of size n × m, where n is the

number of samples, m is the number of input features, and l is the number of labels. The

method seeks to produce a chosen subset of features, OFS (Optimizing Features using

SHAP), containing the most essential and practical features of the original datasets. The

process starts by initializing an empty list FS ← {} to store the important features. We

train ML models M1,M2, ...Mk in the training dataset. We then chose the best models

based on their results. Next, we use SHAP to explain and calculate the importance of each

feature, Xi, in the test data. We determine the importance coefficient, pi, for each feature

of the data. The feature Xi is added to the list FS if its importance coefficient, pi, is greater

than or equal to a predefined threshold τ . Once all features have been evaluated, the list

FS is sorted in descending order based on the importance coefficients τ . Next, we identify

the most significant features of the sorted list that meet the threshold. We then return

the important feature subset FS as the final output OFS for training and testing the ML

model. Consequently, the overall pseudocode for optimizing the set of features using SHAP

is presented in Algorithm 2.3.

In summary, the suggested method uses SHAP and ML models to figure out the impor-

tance weight of each feature in the dataset. Then it uses a threshold, τ , to pick the most

44



2.5 Experiments and Evaluation

Algorithm 2.3 OFS: Optimizing Feature Set Using SHAP

Input: DS - dataset with the feature set F ; M - m AI models; τ - threshold to drop

features.

1: X, y ← DS ▷ Get dataframes for features and labels

2: X ← Normalize(X) ▷ Normalize all features to [0,1]

3: FS ← ∅ ▷ Init the feature set list.

4: for each m ∈M do ▷ Determine the feature importance for each AI model m.

5: AI ← m.fit(X, y) ▷ Train m using the dataset.

6: if m is a boosting model then

7: shap valuesm ← SHAP.TreeExplainer(m) ▷ Compute the SHAP values of all

features based on decision tree model.

8: else

9: shap valuesm ← SHAP.DeepExplainer(m) ▷ Compute the SHAP values of all

features based on DL model.

10: end if

11: FS.push(shap valuesM) ▷ Push the Shapley values of the model M into the list

FS.

12: end for

13: OFS ← ∅
14: for each f ∈ F do

15: shap values← FS[f ] ▷ Get SHAP values of feature f on all models M .

16: if shap values ≥ τ then

17: OFS ← OFS ∪ f ▷ Consider f being important and add to OFS in the case of

all its SHAP values ≥ τ .

18: end if

19: end for

Output: OFS - Optimized Feature Set.

important and influential features based on their importance coefficients.

2.5 Experiments and Evaluation

The appliance server used in our experiments has a configuration of 2 x Intel Xeon-

Platinum 8160 (24-cores); 384GB DDR4 RAM; NVIDIA Tesla T4 16GB; SmartNIC Na-

patech NT40E3-4-PTP to validate our proposed method in Chapter 2, Chapter 3 and

Chapter 4. Suricata v6.0.3 is tuned, and new components are added to control traffic flows

and implement the deep inspection strategy described in Chapter 4 . We use Python version

3.8 as a programming language with the following libraries and frameworks: Fastai V2.3.0,

Scikit-learn V0.24.1, Matplotlib V3.4.1, Pandas V1.2.3, Numpy V1.20.2.

45



2.5 Experiments and Evaluation

2.5.1 Dataset Preparation

In this section, we prepare the datasets for experiments to demonstrate the contributions

of our proposed augmentation dataset algorithms. These datasets will also be used for

experiments in Chapter 3 and Chapter 4. In our experiments, the data preparation process

is conducted according to the following steps:

1. Define redundant attributes that are not needed in AI models based on the Autogluon

framework [57].

2. Remove redundant attribute columns from the original data set (still keeping the

original number of samples).

3. Delete the NaN and duplicate samples in the dataset after cleaning redundant features.

4. Perform a random selection of the testing samples according to the stated strategy.

The output of this step is the testing set and the raw training set.

5. Generate and augment the raw training set based on our proposed augmented dataset

algorithms. The output of this step is the augmented training set.

The datasets were prepared following the five basic steps described above. To evaluate our

proposed methods, we constructed the corresponding datasets for experimental assessment,

as detailed below:

• DS1: We selected CSE-CIC-IDS2018 and NSL-KDD, two well-known benchmark datasets,

to evaluate the effectiveness of Algorithm 2.1, the output constitute DS1. In particular,

based on the distribution of classes in CSE-CIC-IDS20- 18, we notice that there are six

classes with more than 20,000 samples and six classes with fewer than 20,000 samples.

With NSL-KDD, two classes have more than 20,000, and three classes have less than

20,000. Therefore, we decided to choose a threshold of 20,000 samples to augment the

training datasets with Algorithm 2.1.

For testing datasets, to ensure objectivity, they are built by randomly selecting samples

from the original datasets. With a maximum of 20,000 samples for each label, we

selected a testing/training sample ratio of 3:10 and then had a maximum of 6,000

samples for each class.

To augment SQL-injection detection, we also built a testbed system, as shown in Fig-

ure 2.2, to add more detection ability. In this testbed, we deploy all the necessary

standard equipment on the DMZ network, including routers, firewalls, switches, and

web servers. We use Kali Linux to perform SQL-Injection attacks on the attack

46



2.5 Experiments and Evaluation

Attacker Network 1 Attacker Network 2 Attacker Network 3

DBMS DMZ Network

PCAP capture

Web Application Server

Figure 2.2: Testbed Architecture for SQL-Injection Attack Generation

network. We also use the Wireshark tool to capture network traffic and then use

CICFlowMeter to extract traffic flow features such as CSE-CIC-IDS2018.

Finally, based on our dataset preparation process, we obtain two augmented datasets

DS1, illustrated in Table 2.1. Note that DS1 datasets will be comprehensively evalu-

ated in Chapter 3.

• DS2: We also selected CSE-CIC-IDS2018 and NSL-KDD to experimentally evaluate

the effectiveness of Algorithm 2.2, the output constitute DS2. The CSE-CIC-IDS2018

has a total of 12 classes labeled by [Benign, Infiltration, Bot, DDos-HOIC, DoS-

GoldenEye, DoS-Hulk, DoS-Slowloris, DDoS-LOIC-UDP, BruteForce-Web, BruceForce-

XSS, SQL-Injection]. The Bengin samples in this dataset are much larger than

the attack samples. It has enough samples for Bot and DDOS − HOIC, while

SQL− Injection and BruteForce−Web have very small attack samples.

Related to NSL-KDD, it has four classes: [DoS, Probe, U2R, R2L]. Like CSE-CIC-

IDS2018, we also observe that Benign samples dominate the attack samples. However,

DoS has larger samples, while the other attacks, i.e. R2L and U2R, suffer from very

low samples.

For both datasets, the samples of each label (in each dataset) are largely imbalanced.

To enhance these datasets, the AWGAN algorithm is applied to each class, where the

parameter r (ratio between training and testing sets) is set to 7:3, and τ (maximum

samples in a label) set to 20,000. Note that, with AWGAN setting with these pa-

rameters, the class having more than 20,000 samples will be “compressed,” selecting

only 20,000 samples. Meanwhile, the class with less than 20,000 samples will be

“zoomed” and “generated” with more realistic samples up to 20,000. A point that

should also be emphasized here is that for classes with less than 20,000 samples, the

training/test set division must be performed before applying WGAN. For example,

with the “BruteForce-Web” class of CSE-CIC-IDS2018 with 261 samples, the test set

47



2.5 Experiments and Evaluation

Table 2.1: Dificulty-Aware-based Data Augmentation

Class Original Train Test

CSE-CIC-IDS2018

Benign 4, 360, 029 20, 000 6, 000

Bot 282, 310 20, 000 6, 000

DDoS-HOIC 668, 461 20, 000 6, 000

DoS-GoldenEye 41, 455 20, 000 6, 000

DoS-Hulk 434, 873 20, 000 6, 000

Infiltration 160, 604 20, 000 6, 000

SQL-Injection 26, 797 20, 000 6, 000

DoS-SlowHTTPTest 19, 462 13, 623 4, 491

DoS-Slowloris 10, 285 14, 826 2, 373

DDoS-LOIC-UDP 1, 211 1, 588 279

BruteForce-Web 253 978 58

BruteForce-XSS 151 106 35

NSL-KDD

Benign 61, 343 20, 000 6, 000

DoS 39, 927 20, 000 6, 000

Probe 8, 153 20, 000 1, 881

R2L 697 4, 467 161

U2R 36 36 8

will be randomly selected at 30% ∗ 261 ≃ 78 samples. The remaining 183 samples will

be fed into AWGAN to generate up to 14,000 samples.

Similarly, after utilizing our AWGAN, we obtained the augmented training sets for

training AI models and test sets for evaluating them. Finally, Table 2.2 summarizes

the number of samples for each class of both datasets. In this table, the Original

column represents the number of original samples after removing NaN and duplicate

values, the Train column is the number of samples augmented by AWGAN, and the

Test column shows the original samples.

• DS3: We selected EMBER2017, EMBER2018, and BODMAS, which are widely rec-

ognized datasets for malware detection, to experimentally evaluate the effectiveness

of Algorithm 2.3, the output constitute DS3. In our work, we extract and represent

48



2.5 Experiments and Evaluation

Table 2.2: AWGAN-based Data Augmentation

Label Original Train Test

CSE-CIC-IDS2018

Benign 4, 360, 029 14, 000 6, 000

Infiltration 160, 604 14, 000 6, 000

Bot 282, 310 14, 000 6, 000

DDoS-HOIC 668, 461 14, 000 6, 000

DoS-GoldenEye 41, 455 14, 000 6, 000

DoS-Hulk 434, 873 14, 000 6, 000

DoS-SlowHTTPTest 13, 067 14, 000 4, 082

DoS-Slowloris 6, 977 14, 000 2, 093

DDoS-LOIC-UDP 1, 120 14, 000 336

BruteForce-Web 261 14, 000 78

BruteForce-XSS 97 14, 000 29

SQL-Injection 53 14, 000 17

NSL-KDD

Benign 61, 343 14, 000 6, 000

DoS 39, 927 14, 000 6, 000

Probe 8, 333 14, 000 2, 500

R2L 637 14, 000 191

U2R 40 14, 000 12

a PE file using the Library to Instrument Executable Formats (LIEF). We utilize

this library for both the EMBER 2017 and 2018 datasets. The library contains nine

groups of raw static features, totaling 2381 features. These groups include a byte

histogram with 256 features, a byte-entropy histogram with 256 features, and string

information with 104 features. The generic file includes ten features and header data

with 62 features. The import functions category has 1280 features, while the section

information has 255. Data directories have 30 features, while export information has

128 features.

Moreover, the EMBER datasets contain both training and testing sets. The training

dataset provides benign, malicious, and unlabeled data in three categories as 0, 1, and

−1. However, the testing set within the dataset contains no unlabeled data. To strike

a compromise, we excluded unlabeled samples from further processing and rebuilt the

49



2.5 Experiments and Evaluation

training set using only labeled data. This step will equalize the training and testing

sets and improve the performance of the ML model.

We also used the BODMAS dataset [108] for evaluation. The BODMAS dataset was

curated from a large corpus of PE files collected between August 2019 and September

2020. Each sample in BODMAS is labeled malicious 1 or benign 0. Feature extraction

for BODMAS was performed using the LIEF, consistent with the EMBER dataset.

Each sample is represented by a 2381 dimensional feature vector, encompassing various

static characteristics of PE files. Three datasets for our experiment evaluation:

– The EMBER2017 dataset contains malware and benign samples collected from

2017 and older, including 300K of each label (0 for benign/1 for malware) in the

training dataset, 100K of each label in the test dataset, and 300K of unlabeled

samples, which are marked as label -1. The total EMBER 2017 contains 1,100K

samples.

– The EMBER2018 dataset, collected in 2018, includes 300K of each label (0/1 ) in

the training dataset, 100K of each label in the test dataset, and 200K of unlabeled

samples, which are marked as label -1. EMBER2018 totally contains 1,000K

samples.

– The BODMAS dataset includes 57,293 malware samples from 67 malware families

and 77,142 benign samples. All samples in the BODMAS dataset are labeled as

either 0 (benign) or 1 (malicious). The total BODMAS dataset contains 134,435

labeled samples. Moreover, BODMAS, although recent, lacks standardized fea-

ture definitions and includes only feature vectors without benign binaries due to

copyright issues, limiting full reproducibility.

After releasing the original dataset in 2017 (we will call this EMBER2017), Anderson et

al. also released a new updated version in 2018 (often called EMBER2018). Compared

to the former version, EMBER2018 has many improvements, including:

– New data: EMBER2018 only contains new data collected in 2018. The EM-

BER2017 dataset only includes all pre-2018 samples.

– Duplicates and Outliers cleaned : The authors identified and eliminated abnor-

mally low- and high-density data using a fast cover tree. The authors classified

the samples as outliers if they did not geometrically contribute to the data, as

determined by a weighted fractal dimension. Duplicates were nodes in the tree

whose radius was less than the L2 norm implementation error rate.

– New features included : For every sample in EMBER2018, MD5 was present and

also provided the AVClass label for malicious samples.

50



2.5 Experiments and Evaluation

– Harder Dataset : This new dataset prioritized the addition of NET-packed software

and 32- and 64-bit samples along with benign and malicious samples. This dataset

also relied on the trusted tag in VirusTotal to prove benign origins. The trusted

tag on VirusTotal helped the authors incorporate samples from various vendors

that had false positives. The dataset prioritizes samples of significant malware

families from 2018. Some example families include Wannacry, Emotet, Qbot,

Gh0st, Brambul, Zbot, Kovter, Samsam, Mirai, Coinminer, Nanocore, Cerber,

Ursnif, Redyms, Ramdo, Tinyloader, and Trickbot.

As a result, based on technique in Section 2.4. Experiments using the EMBER2017 and

EMBER2018 datasets identified 90 redundant characteristics from the 2381 attributes

representing each PE sample. The result of the feature cleaning step produced a set

of 2291 important attributes to form the feature vectors. We removed them; their

column IDs include: “627, 636, 638, 648, 650, 652, 659, 663, 666, 667, 669, 670, 672,

673, 674, 675, 676, 849, 859, 862, 867, 883, 891, 894, 896, 898, 899, 900, 904, 905, 908,

909, 910, 912,917, 919, 920, 922, 923, 924, 926, 931, 932, 934, 936, 937, 629, 630, 635,

651, 653, 671, 861, 864, 871, 878, 884, 889, 890, 907, 911, 913, 914, 918, 925, 933, 935,

938, 939, 942, 962, 974, 989, 997, 1022, 1042, 1044, 1052, 1053, 1056, 1057, 1069, 1086,

1120, 1125, 1151, 1173, 1179, 1184, 2367”.

Furthermore, we performed the optimization feature method based on Algorithm 2.3

for EMBER2017 and EMBER2018. Our method chooses a set of thresholds to compute

the optimal number of features for the classification task. We use six thresholds: 0.1,

0.075, 0.05, 0.25, 0.01, and 0.001. For each threshold, features with SHAP values ≥
the chosen threshold are selected, shown as Figure 2.3. We found that the threshold

of 0.025 gives the best result, shown as Figure 2.4. This threshold yields 170 (all the

features selected by the four models) and 565 (the union of all the features selected

by the four models) important features out of a total of 2, 381 features in the original

dataset. We then save this set of features as a new dataset for use in the next steps.

Moreover, following the method in Section 2.4, we applied the BODMAS dataset. Using

six thresholds (0.1, 0.075, 0.05, 0.025, 0.01, and 0.001). Our analysis revealed that a

threshold of 0.01 provides an optimal balance, resulting in two refined feature sets, shown

in Figure 2.5. The intersection set selected by the four models (4 features). The union set

was selected by at least one model (165 features). Figure 2.5 illustrates the variation in

the accuracy of four models under different SHAP-based feature selection thresholds. The

results indicate that tree-based models maintain relatively stable performance, with only a

slight drop at the 0.075 threshold compared to lower thresholds. In contrast, CNN is highly

sensitive: at the 0.075 threshold, its accuracy decreases dramatically to the lowest level

51



2.5 Experiments and Evaluation

(a) XGB Feature Important Score (b) GBM Feature Important Score (c) CBT Feature Important Score (d) CNN Feature Important Score

Figure 2.3: SHAP-based Feature Important Scores on EMBER2018 Dataset

(a) XGB (b) GBM (c) CBT

Figure 2.4: Threshold-based Performances on EMBER2018 Dataset

( 95.5%) but quickly recovers as the threshold decreases to 0.05 and below. This observation

indicates that the 0.075 threshold is unsuitable, especially for CNN, as it removes too many

important features. The thresholds 0.05, on the other hand, produce a higher and more

stable accuracy, providing a better balance between retaining the relevant features and

maintaining the classification performance.

0.100 0.075 0.050 0.025 0.010 0.001
Threshold

0.96

0.97

0.98

0.99

Ac
cu

ra
cy

XGB
GBM
CBT
CNN

Figure 2.5: Threshold-based Performances on BODMAS Dataset

52



2.5 Experiments and Evaluation

2.5.2 Results and Evaluation

In this section, we present the results obtained from the experiments to prove the perfor-

mance of our proposed method. To evaluate the effectiveness of the proposed algorithms,

we use the following scenarios:

• S1: We thoroughly evaluate Algorithm 2.1 on the DS1 to investigate its effectiveness

in addressing class imbalance. Our goal is to ensure a more equitable representation

of all types of attack in the training set, thereby improving the model’s ability to

accurately detect frequent and rare intrusions.

• S2: The AWGAN Algorithm 2.2 is evaluated on DS2 to rigorously assess its ability

to generate realistic and diverse synthetic samples for minority classes. By directly

addressing the data imbalance at the class level, this scenario enables us to verify

whether adversarial augmentation via AWGAN can significantly boost detection rates.

• S3: The OFS Algorithm 2.3 is examined using the DS3, with a focus on static malware

detection tasks. The evaluation comprises three phases: (1) establishing a baseline

with the original dataset, (2) measuring improvements with the augmented dataset,

and (3) performing a comparative performance analysis. This scenario demonstrates

the practical impact of advanced feature selection on malware detection.

2.5.2.1 S1 Results

Originally, CSE-CIC-IDS2018 were heavily imbalanced; for example, the Benign class in

CSE-CIC-IDS2018 had more than 4 million samples, while classes such as DDoS-LOIC-

UDP and BruteForce-Web had only 1,211 and 253 samples, respectively. In NSL-KDD,

Benign began with 61,343 samples, while U2R had just 36.

After applying our balancing method, most classes were increased or compressed to up to

20,000 training samples. For instance, in DS1, DDoS-LOIC-UDP rose to 1,588, BruteForce-

Web to 978, and Benign was reduced to 20,000. In NSL-KDD, Probe was augmented to

20,000, R2L to 4,467, while U2R remained at 36 due to data scarcity.

These changes, summarized in Table 2.1, led to a much fairer distribution between

classes and provided a solid foundation for robust model training. The effect is also visible

in the t-SNE visualizations : before the balancing shown in Figure 2.6a and Figure 2.7a,

majority classes dominate the feature space and the minority classes are barely visible.

After balancing shown in Figure 2.6b and Figure 2.7b, the clusters for all classes are more

evenly distributed, with the minority classes forming clearer and more distinct groups.

53



2.5 Experiments and Evaluation

(a) Original (b) Augmented

Figure 2.6: Difficulty-Aware-based Visualization of CSE-CIC-IDS2018 Training Set

(a) Original (b) Augmented

Figure 2.7: Difficulty-Aware-based Visualization of NSL-KDD Training Set

This improvement in class distribution and separation supports our observed perfor-

mance gains shown in Table 2.3, where DNN, XGB, and GBM achieved high precision,

precision, recall, and F1, all above 98. 8% in all classes. AUC values also reached nearly

100%, demonstrating the effectiveness of the method, especially for minority attack types.

However, a limitation remains: for some extremely minority classes (e.g., BruteForce-

Web, BruteForce-XSS, U2R), it was not feasible to increase their size to 20,000 due to the

lack of original data, as shown in Table 2.1. This is also reflected in the t-SNE plots, where

these classes still appear as smaller, less compact clusters. Thus, while overall balance and

detection improved significantly, detecting the rarest attacks continues to be a challenge

and warrants further research.

2.5.2.2 S2 Results

After applying AWGAN, we obtain balanced, augmented training sets for model training

and separate test sets for evaluation. Table 2.2 summarizes the number of samples per class

in both datasets. In this table:(1) The “Original” column shows the sample count after

cleaning (removal of NaN and duplicates); (2) The “Train” column gives the number of

54



2.5 Experiments and Evaluation

Table 2.3: Evaluation of AI models on Dificulty-Aware-based Data Augmentation (%)

Metric
CSE-CIC-IDS2018 NSL-KDD

DNN XGB GBM DNN XGB GBM

Acc 99.73 99.58 99.74 98.80 99.66 99.43

Prec 99.80 99.59 99.59 98.84 99.66 99.44

F1 99.66 99.58 99.58 98.80 99.66 99.43

Rec 99.73 99.58 99.58 99.80 99.66 99.43

AUC 99.96 100 100 99.84 100 99.92

samples after AWGAN augmentation; (3) The “Test” column shows the number of samples

used for model evaluation.

The CSE-CIC-IDS2018 dataset has a total of 12 classes. The Bengin samples in this

dataset are much larger than the attack samples. It has enough samples for Bot and

DDOS −HOIC, while SQL− Injection and BruteForce−Web have very small attack

samples.

Related to NSL-KDD, it has four classes. Like CSE-CIC-IDS2018, we also observe that

Benign samples dominate the attack samples. However, DoS has larger samples, while the

other attacks, i.e. R2L and U2R, suffer from very low samples.

The individual models evaluated in this study achieved an F1 score of 99. 77% or higher

except for the DNN model, which indicates excellent performance, shown as Table 2.4.

We also can see that the AWGAN algorithm has greatly improved the quality of the

training data set by confirming that all AUC measurements are greater than 99. 85%.

This demonstrates the excellent efficiency gains in intrusion detection made possible by

data augmentation using the AWGAN algorithm.

We also use the distributed stochastic neighbor embedding method (t-SNE) [102] in order

to visualize high-dimensional training sets. Figure 2.8a and Figure 2.9a show the original

data before performing AWGAN-based augmentation, while Figure 2.8b and Figure 2.9b

illustrate the augmented training sets.

As illustrated in Figure 2.8 and Figure 2.9, the visualization confirms that the training

set after using the AWGAN-based augmentation has solved the challenges of sparse and

unbalanced data. The DS2 datasets had more distinct clusters corresponding to their classes

than before the augmentation. In addition, with very high intrusion detection results, as

illustrated in Table 2.4 for both datasets, AWGAN clearly qualifies to improve training set

quality.

55



2.5 Experiments and Evaluation

Table 2.4: Evaluation of AI models on WGAN-based Data Augmentation (%)

Metric
CSE-CIC-IDS2018 NSL-KDD

XGB CBT GBM BME DNN XGB CBT GBM BME DNN

F1 99.77 99.92 99.95 99.77 97.75 99.48 99.21 99.48 99.48 98.00

Acc 99.76 99.92 99.96 99.98 97.54 99.49 99.22 99.56 99.43 98.07

Prec 99.83 99.93 99.96 99.98 98.20 99.49 99.21 99.49 99.41 98.03

Rec 99.76 99.92 99.96 99.98 97.54 99.49 99.22 99.49 99.43 98.07

FPR 0 0 0.03 0 0.13 0.67 1.27 0.63 0.77 1.22

FNR 0 0.01 0 0 1.37 0.37 0.39 0.30 0.32 2.26

AUC 100 100 99.99 99.99 98.69 99.99 99.98 99.99 99.89 99.85

(b) Augmented(a) Original

Figure 2.8: AWGAN-based Visualization of CSE-CIC-IDS2018 Training Set

(b) Augmented(a) Original

Figure 2.9: AWGAN-based Visualization of NSL-KDD Training Set

56



2.5 Experiments and Evaluation

2.5.2.3 S3 Results

In this scenario, the models begin with no specified parameters, as the aforementioned

algorithm automatically generates hyperparameters based on the dataset. Based on running

all models on the EMBER2017 without tuning hyperparameters, the experiment result

showed that with XGB and CBT, the accuracy is already above 99%, while GBM and

CNN have an accuracy below 99%, shown as Table 2.5. This is not surprising, given that

numerous researchers, including the original authors of the dataset, have commented on

the relative simplicity of the EMBER dataset. Therefore, we focused only on fine-tuning

the EMBER2018 and BODMAS dataset.

Furthermore, we performed the optimization feature method based on Algorithm 2.3

for EMBER2018 and BODMAS. Table 2.6 displays the results of the F1 score when using

the 170 and 565 features of EMBER2018 dataset, indicating a superior performance when

choosing the 565 features. The accuracy for the XGB model is 97.68%, the CBT model is

97.52%, the GBM model is 97.89% and the CNN model is 95.90%.

Table 2.5: Evaluation of AI models on Original Datasets(%)

Method F1 Acc Prec Sens FAR FNR

EMBER2017 Evaluation

XGB 99.16 99.16 99.16 99.16 0.84 0.84

CBT 99.27 99.27 99.27 99.27 0.73 0.73

GBM 98.67 98.67 98.67 98.67 1.33 1.33

CNN 95.95 96.04 93.72 95.95 3.35 4.05

EMBER2018 Evaluation

XGB 97.63 97.63 97.63 97.63 2.37 2.37

CBT 97.19 97.19 97.19 97.19 2.81 2.81

GBM 97.80 97.80 97.80 97.80 2.20 2.20

CNN 94.03 94.02 94.16 94.02 5.97 5.98

BODMAS Evaluation

XGB 98.71 98.69 99.68 97.75 0.32 2.25

CBT 98.94 98.93 99.88 98.02 0.12 1.98

GBM 98.90 98.89 99.94 97.88 0.06 2.12

CNN 98.90 98.89 99.87 97.96 0.13 2.04

To evaluate the effectiveness of our feature optimization and data balancing strategies,

57



2.5 Experiments and Evaluation

Table 2.6: Evaluation of AI models based Features set Optimization (%)

Method F1 Acc Prec Sens FAR FNR F1 Acc Prec Sens FAR FNR

BODMAS (4 features) BODMAS (165 features)

XGB 89.76 90.78 85.19 94.85 4.82 5.15 99.28 99.39 99.28 99.28 0.61 0.72

CBT 89.76 90.77 85.17 94.86 4.83 5.14 99.26 99.37 99.29 99.23 0.71 0.77

GBM 89.76 90.78 85.16 94.89 4.80 5.11 99.13 99.26 99.09 99.16 0.74 0.84

CNN 88.03 88.95 81.77 95.34 4.66 4.66 99.13 99.26 99.02 99.24 0.76 0.74

EMBER2018 (170 features) EMBER2018 (565 features)

XGB 97.59 97.59 97.84 97.34 2.16 2.66 97.67 97.68 97.97 97.37 2.17 2.63

CBT 97.45 97.45 97.52 97.37 2.25 2.53 97.52 97.52 97.58 97.46 2.26 2.54

GBM 97.85 97.86 97.23 97.47 2.13 2.53 97.88 97.89 98.34 97.42 2.16 2.58

CNN 95.72 95.72 95.71 95.73 4.03 4.27 95.72 95.90 95.64 95.19 4.08 4.81

we compare the model performance in the original datasets shown in Table 2.5 and in the

optimized feature sets shown in Table 2.6 for EMBER2018 and BODMAS dataset.

In EMBER2018 dataset, the original data and optimized datasets (170 and 565 features)

show minimal differences in the results. For example, XGB has F1-scores of 97.63%

(original), 97.59% (170 features), and 97.67% (565 features). All metrics, including FAR and

FNR, remain stable across configurations, indicating that feature optimization preserves

baseline performance on this well-structured dataset.

In the original BODMAS dataset, all models achieve F1-scores and accuracy below

98.9%, with particularly high precision for tree-based models (e.g., CBT: 99.88%). However,

when models are trained on the optimized feature set with only 4 selected features, F1 and

accuracy drop to around 89–91%. When using 165 optimized features, all models regain

their high performance, with F1 and accuracy returning to 99.1–99.4%, and precision,

recall (sensitivity), FAR, and FNR are all comparable to or slightly better than the original

baseline.

This demonstrates that excessive feature reduction (e.g., to 4 features) can degrade

performance, but a carefully selected subset (165 features) maintains or even improves the

model’s effectiveness compared to training on all original features. In particular, the XGB

model achieves an F1-score of 99.28% and accuracy of 99.39% on the 165 feature dataset,

slightly outperforming its original F1 of 98.71%.

For BODMAS dataset, optimizing and balancing features not only reduces model com-

plexity, but also maintains or improves detection quality, particularly for the most important

metrics (F1, Acc, Prec, Sens, FAR, FNR). For EMBER2018 dataset, the model is robust

to both original and optimized feature sets, with performance differences less than 0.1

58



2.6 Summary

percentage points.

Feature optimization and data balancing, when carefully applied, achieves equal or

superior results to the original baseline, while reducing input dimensionality and potential

overfitting. This validates the practical utility and robustness of our approach across

datasets and model types.

2.6 Summary

This chapter addresses one of the most significant challenges in intrusion detection: data

imbalance, specifically, the redundancy of samples in the majority class and the scarcity of

samples in the minority class. These issues not only lead to biased machine learning models

that struggle to detect rare attacks but also increase the false positive rate. To overcome

this, the chapter proposes, develops, and rigorously evaluates the dataset augmentation

strategy and the optimization of the feature set.

The beginning of the chapter presents a detailed analysis of the practical challenges

posed by network datasets such as CSE-CIC-IDS2018 and EMBER, where benign traffic

dominates overwhelmingly, while attack samples, especially novel or sophisticated ones

(e.g., infiltration, exfiltration, APT), are extremely limited. Relying solely on conventional

or random oversampling methods often results in synthetic data that is noisy, less realistic,

and can even degrade model performance.

To address these issues, the chapter introduces novel augmentation dataset techniques

for machine learning. Specifically, the proposed method uses the Edited Nearest Neighbors

(ENN) algorithm to partition the dataset into ’easy’ and ’difficult’ subsets. For the majority

class within the difficult subset, a clustering-based compression technique using KMeans

is applied to reduce redundancy while still preserving the most representative features of

the model. For the minority class, in addition to a zooming technique that generates

new samples around the original points, the method also uses WGAN to generate new

attack samples. WGAN not only learns the true distribution of attack data, but also

produces high-quality samples while assessing the quality of the generated data to enrich

the minority class. Furthermore, we also propose the feature set optimization method,

which reduces the dimensionality of features, thus increasing diversity while maintaining

model interpretability.

The entire approach is empirically evaluated on both public and real-world datasets. The

results show that the proposed method significantly improves the detection of rare attack

classes, reduces false positives, and improves model stability. However, comprehensive

comparisons will be made in the following chapters.

These research results have been partially presented in published works, including three

59



2.6 Summary

articles in respected journals (VVH-J2, VVH-J1, VVH-j3) and two conference paper (VVH-

C2, VVH-C4), highlighting the novel and important contributions discussed in this chapter.

Specifically, VVH-J2 presents an algorithm that addresses the challenge of class imbalance

in network intrusion datasets through data compression and zooming techniques. VVH-J1

and VVH-C4 propose GAN-based methods capable of generating new samples to augment the

minority class, thus mitigating data imbalance. VVH-j3 introduces a feature optimization

approach to improve the quality of the dataset. In general, the content of these publica-

tions demonstrates the originality and scientific significance of the research contributions

introduced in this chapter.

60



Chapter 3

Enhancing AI-powered Intrusion Detection

with Mutual Deep and Boosting Inference

Building upon the enhanced data foundation established in Chapter 2, Chapter 3 focuses on

harnessing the synergistic power of deep learning methods and modern boosting algorithms.

This chapter changes the focus from the “quality” of input data to the “quality” of detection

models, explaining how to effectively combine models like CNN, XGBoost, LightGBM, and

CatBoost using methods like soft voting and stacking, which allows each model to work

together well while being understandable and handling uncertainty effectively. Furthermore,

mutual support and integration of these models increases the overall resilience of the

proposed system; when one model fails to detect an attack, another may succeed and

vice versa. The selection and integration of these approaches in this chapter also serve as

an essential preparatory step toward building a practical, large-scale intrusion detection

and defense system, an objective that will be further developed in the next chapter.

3.1 Problem Statement

In the evolving threat landscape, traditional machine learning techniques often fail to

recognize sophisticated cyberattacks due to their limited representation capacity. As AI-

based intrusion and malware detection systems are increasingly deployed in practice, one

of the key challenges is optimizing the performance of machine learning models to achieve

high accuracy, robustness, and generalization in real-world scenarios. Traditional machine

learning methods, such as boost models or deep neural networks, each have their own

advantages and limitations.

Boosting models such as XGBoost, LightGBM, and CatBoost excel in capturing non-

linear features and often perform well in structured datasets [18]. However, they may

lack the ability to detect subtle anomalies or abstract patterns, which are strengths of deep

neural networks (CNNs, DNNs). In contrast, deep learning models, especially convolutional

neural networks, have shown great promise in detecting sophisticated attack patterns, but

are often susceptible to noisy data, are harder to interpret, and typically require substantial

computational resources [1].

Another pressing issue is that most current approaches rely on single-model architectures

61



3.2 Network Intrusion Detection via AI-Powered Deep Analysis

or only simple combinations of different models, resulting in unstable performance and

limited resilience against adversarial attacks or complex real-world data [38]. Furthermore,

selecting the optimal model for each dataset and scenario is a challenging task, requiring a

delicate balance between accuracy, robustness, inference speed, and deployment feasibility.

These challenges highlight the need for a promising approach based on ensemble learning,

which takes advantage of the complementary strengths of strengthening models and deep

learning architectures. Integrating diverse models can reduce the risk of individual model

bias or vulnerability while improving the detection of common, rare, or sophisticated attack

patterns.

In this chapter, our aim is to answer the following problem statement: How can we

design a flexible ensemble learning framework that optimizes discrimination,

enhances robustness, and maintains operational efficiency for intrusion and

malware detection?

To address this question, the proposed solution includes the following:

• Designing a mutual ensemble inference strategy through soft voting and stacking,

allowing for complementary and mutually reinforcing detection capabilities across

models.

• Explicitly improving system-level resilience by taking advantage of the compensatory

nature of the ensemble. When one model fails to detect a threat, others in the ensemble

may still succeed, thus increasing the overall robustness and reducing the risk of missed

detections.

• Assess performance across metrics such as accuracy, F1 score, robustness to adversarial

variation, system-level resilience to missed detections, and computational overhead.

This approach aims to harness the complementary strengths of both deep and boost

models, leading to a unified detection mechanism that is accurate, robust to model weak-

nesses, and practical for deployment in real-world scenarios.

3.2 Network Intrusion Detection via AI-Powered Deep

Analysis

3.2.1 Direction Approach

Suppose P1(f), P2(f),...Pn(f) are the probability outputs of the n AI models for a feature

vector f ; ω1, ω2,..., ωn are the weight ratio that represents the importance of model where

62



3.2 Network Intrusion Detection via AI-Powered Deep Analysis

Figure 3.1: Network Intrusion Detection by Using AI-powered Deep Analysis

each ωi ∈ (0, 1) and
n∑

i=1

ωi = 1. The ensemble learning is involved to combine them into

regular and attacks network flow by the following formula:

ELPred(f) =

n∑
i=1

Pi(f) ∗ ωi (3.1)

We developed the SDAID solution, a comprehensive network intrusion detection ap-

proach that uses deep AI-powered analysis to identify anomalous behavior, as illustrated

in Figure 3.1. However, within the scope of this chapter, we focus solely on AI-powered deep

analysis for network intrusion detection, specifically the DeepInspector component; other

techniques will be presented in the following chapter. In DeepInspector, once it receives

the flow data, it will perform AI-powered deep inspection by performing three core tasks

as follows:

1. FeatureExtractor: this component takes on the role of extracting features from each

network flow. CICFlowMeter can be used to perform this task by transforming a

network flow into a vector of 83 features [44].

2. PAID-BasedDetector: this detector assumes AI- powered deep analysis. Its role is to

analyze a feature vector as input and determine whether it is benign or an intrusion

attack as output. Deep-sequence analysis powered by AI is described in more detail

in Section 3.2.

3. IoCGenerator: this module takes the result of the PAID-BasedDetector as input,

processes it, and generates an alert message (msg) for the Alarm component of IDPS. It

also generates an indicator of compromise (IoC) from flow features such as Destination

63



3.2 Network Intrusion Detection via AI-Powered Deep Analysis

Algorithm 3.1 PAID: Perform an Ensemble Learning for AI-powered Intrusion Detection

Model: XGB - XGB trained model; DNN - DNN trained model; GBM - GBM trained

model

Input: f - traffic flow.

Output: (msg, IoC) - (alert message; generated new IoC)

1: R← ∅
2: F ← CICFlowMeter(f) ▷ extract 83 features of traffic flow f

3: Fin← F\[FlowID, SrcIP, SrcPort, Label] ▷ remove 4 unused features

4: Cats← [DstPort, Protocol] ▷ Categorical Variables

5: Conts← Fin \ Cats ▷ 77 Continuous Variables

6: Perform three processes P1,P2,P3:

7: P1: dnn preds← DNN.predict(Cats, Conts) ▷ perform the prediction using DNN

model

8: P2: xgb preds← XGB.predict(Cats, Conts) ▷ perform the prediction using XGB

model

9: P3: gbm preds← GBM.predict(Cats, Conts) ▷ perform the prediction using GBM

model

10: Wait P1, P2, P3 finished.

11: avgs← (xgb preds+ dnn preds+ gbm preds)/3)

12: FC ← avgs.argmax(axis = 1) ▷ get the flow labels from 0 to 11

13: if FC! = 0 then ▷ classified as network attacks

14: msg ← Alert(FC) ▷ constitute an alert by using metadata from the flow f ; set

alert category being as label

15: R← IoCGenerator(FC) ▷ generate a new IoC to handle the next similar flows

16: end if

17: return msg; IoC

IP, Port, Protocol in the case of PAID-BasedDetector recognized as an attacked

intrusion. This IoC is then sent to the Signatures component of traditional IDPS

in order to update his IoC set. Note that when detecting a benign flow, the IoC and

a null message are returned from the IoCGenerator.

The extraction of network traffic flows described above does not affect the processing of

network traffic flows corresponding to the Other case. It indicates that the deep analysis

process does not obstruct or discard network traffic. However, AI-powered deep analysis

concentrates on anomaly detection and updating the IDPS ruleset with new signatures to

prevent network attacks. In addition, the alert provides information for the administrator

to have a plan for early network attack mitigation.

The DeepInspector component within our SAID method employs PAID, an AI-driven

64



3.2 Network Intrusion Detection via AI-Powered Deep Analysis

deep analysis model. Based on the study in [63, 57], we acknowledge that DNN, GBM,

and XGB are presently providing the most accurate network intrusion prediction results.

Consequently, our in-depth analysis examines and employs these three methodologies. In

addition, to take advantage of the strengths of both approaches, we propose combining

DNN, GBM, and XGB in deep analysis for intrusion detection using ensemble learning.

In Algorithm 3.1, network traffic is first captured, extracted and modeled by 79 feature

vectors. Next, these vectors are put into the XGB, GBM, and DNN models through three

concurrent processes P1 and P2 P3. Once these processes are completed, the prediction

results are combined with the function argmax(x) to obtain a better result following the

formula: avgs = (xgb preds+dnn preds+gbm preds)/3 and perform: avgs.argmax(axis =

1) to get the final result. Lastly, depending on the outcome of the above step, if the network

attack is detected, the IDPS will generate a new rule to drop/reject the network attacks

and send an alert to the administrators.

3.2.2 Network Traffic Flow Modeling

As mentioned above, one of the core tasks in DeepInspector is to model a network traffic

flow using a feature vector. There are also several ways to extract features from a network

flow, such as CICFlowMeter, KDD99Extractor [64]. For CICFlowMeter, it allows to model

a traffic flow in PCAP format into a vector of 83 features. Meanwhile, KDD99Extractor

extracts 41 features for each flow.

In the SAID method, we propose using CICFlowMeter to perform the feature extraction

task. From the output vector of 83 features, we recognize that “FlowID, SrcIP, SrcPort, and

Label” are redundant features. We ultimately retained 79 features as input vector for the

AI-powered analysis. In this vector, ‘Dst Port, Protocol’ are considered the categorical

variables for classification. Thus, the 77 remaining features are considered continuous

variables. DeepInspector will analyze and determine the intrusion attacks based AI models

described in the following subsections.

3.2.3 DNN-based Intrusion Detection Algorithm

The network intrusion detection with the DNN model using the tabular learner technique

of the FastAI development framework achieves the highest precision while minimizing the

detection rate compared to other ML / DL models [57]. Therefore, we represent the

DNN model using FastAI. However, in a DNN model, it is difficult to identify the optimal

hyperparameters for efficiency and performance. In order to design the best DNN model,

we use an Adaptive Experimentation Platform that employs Bayesian Optimization to turn

the hyperparameters to obtain the optimal model.

65



3.2 Network Intrusion Detection via AI-Powered Deep Analysis

Figure 3.2: DNN-based Intrusion Detection.

Our DNN model is depicted in Figure 3.2. This architecture consists of four essential

components: categorical variables, continuous variables, hidden layers, and output layers.

Variables of type have discrete non-numeric values, such as IP address, protocol, etc.

Continuous variables, on the contrary, encompass a range of values. Based on the feature

vector generated from CICFlowMeter mentioned above, our DNN architecture is established

as follows:

• The two features, DstPort and Protocol, are treated as categorical variables. Each

feature will go through categorical embedding and dropout. The 77 features re-

lated to network traffic flows (specifically FlowDuration, TotFwdPkts, TotBwdP-

kts, TotLenFwdPkts, TotLenBwdPkts, FwdPktLenMax, FwdPktLenMin, FwdPk-

tLenMean, FwdPktLenStd, BwdPktLenMax, BwdPktLenMin, BwdPktLenMean, BwdP-

ktLenStd, FlowByts/s, FlowPkts/s, FlowIATMean, FlowIATStd, FlowIATMax, FlowIAT-

Min, FwdIATTot, FwdIATMean, FwdIATStd, FwdIATMax, FwdIATMin, BwdIAT-

Tot, BwdIATMean, BwdIATStd, BwdIATMax, BwdIATMin, FwdPSHFlags, BwdP-

SHFlags, FwdURGFlags, BwdURGFlags, FwdHeaderLen, BwdHeaderLen, FwdPk-

ts/s, BwdPkts/s, PktLenMin, PktLenMax, PktLenMean, PktLenStd, PktLenVar,

FINFlagCnt, SYNFlagCnt, RSTFlagCnt, PSHFlagCnt, ACKFlagCnt, URGFlagCnt,

CWEFlagCount, ECEFlagCnt, Down/UpRatio, PktSizeAvg, FwdSegSize- Avg, Bwd-

SegSizeAvg, FwdByts/bAvg, FwdPkts/b- Avg, FwdBlkRateAvg, BwdByts/bAvg, BwdPkts/b-

Avg, BwdBlkRateAvg, SubflowFwdPkts, SubflowFw- dByts, SubflowBwdPkts, Sub-

flowBwdByts, InitFwdWinByts, InitBwdWinByts, FwdActDataPkts, FwdSegSizeMin,

ActiveMean, ActiveStd, ActiveMax, ActiveMin, IdleMean, IdleStd, IdleMax, IdleMin)

are used as continuous variable. These features are normalized by BatchNorm1D.

• Layer 1: The categorical class label of each network data flow is also combined with

the input features into a vector of 80 features in the first hidden layer for training. It

is composed of three standard blocks: “Linear”, “ReLU” and “BatchNorm1D”. Using

66



3.2 Network Intrusion Detection via AI-Powered Deep Analysis

a hyperparameter optimization framework, the output of the first hidden layer is set

to 400 features.

• Layer 2: For the second hidden layer, its structure is the same as that for the first

hidden layer. However, from 400 input features, its output is normalized to 200 using

the hyperparameter optimization framework.

• Classification: The final output layer assumes the role of classification through the

linear filter. This set maps from 200 input features to 1 unique value representing a

type of intrusion attack. In our work, except for ‘Benign’ flow, we are also interested in

11 intrusion types: Bot, BruteForce-Web, BruteForce-XSS, DDOS-LOIC-UDP, DDoS-

HOIC, DoS-Hulk, DoS-GoldenEye, DoS-SlowHTTPTest, DoS-Slowlor- is, Infiltration,

SQLInjection.

Note that Figure 3.2 illustrates our DNN architecture for AI models trained from datasets

with feature sets like CICFlowMeter. Thus, it has to be modified in the DNN settings in

the case of using another set of features.

3.2.4 Boosting-based Intrusion Detection Algorithm

The Boosting algorithms that provide superior classification performance in terms of accu-

racy and speed. In boosting learning, multiple models are constructed sequentially. The

first model was constructed using arbitrary guesswork, whereas the second was based on

residuals. The updated model was created by combining the two models. XGB is also an

ensemble technique: It combines numerous decision trees to create a model composed of a

decision tree forest. An individual decision tree is constructed by sorting all features and

evaluating each conceivable split for each feature. The rule for a node is determined by the

division that yields the highest score for the objective function [90]. Due to its performance

and scalability, its prominence is increasing.

We use boosting models with several hyperparameters to detect network intrusions.

First, we employ regularization to combat overfitting and avoid overly restrictive modeling

of the training data. We also configure additional effective parameters, including Maxi-

mum Depth, Minimum Child Weight, and Gamma. The tree may split without correct

regularization until it can precisely predict the training set, resulting in overfitting. The

documentation for these hyperparameters can be found in Subsection 3.2.5. Moreover, we

use our balanced datasets for training with boosting learning models. The experiments

in Subsection 3.2.6 prove that the increase in learning models is among the best learning

models to achieve an excellent precision detection rate compared to other DL models.

67



3.2 Network Intrusion Detection via AI-Powered Deep Analysis

Table 3.1: Hyperparameter Optimization

Model Hyperparameter Value Optimal

DNN

Learning rate [0.001, 1.0] 0.003

Batch size [16, 32, 48, 64, 96, 128] 64

Epochs [1, 2, ..., 15, 16] 5

Layers [[200, 100], ..., [1000, 500]] [400, 200]

XGB

Learning rate [0,1] 0.01

n estimators [1,∞] 30

max depth [0,∞] 6

GBM

Learning rate [0,1] 0.02

min samples leaf [1,∞] 30

max depth [0,∞] 9

3.2.5 Hyperparameter Optimization

We select the model parameters based on a technique called Hyperparameter Optimization

[78]. We use Ax for optimal parameters. Ax is a platform for optimizing any experiment,

including ML experiments, A/B tests, and simulations. We use a technique called Bayesian

Optimization. Bayesian optimization starts by building a smooth surrogate model of the

results using Gaussian processes based on observations from previous rounds of experimen-

tation [61].

In the DNN model, four hyperparameters can be tuned and take two types of values:

range and choice, as shown in Table 3.1. From that, we obtained the learning rate being

0.003; batch size 64; the number of epochs 5; and [400, 200] for the features of layers. The

XGB and GBM are also configured for acting as a tree booster with six hyperparameters

explicitly defined in the training phase. The optimal values are also illustrated in Table 3.1.

3.2.6 Experiments and Evaluation

For the experimental environment, we use the setup presented in Section 2.5. In this section,

we present the results obtained from the deep experiments to prove the performance of

our proposed method, PAID-based intrusion detection. We use DS1, prepared in Subsec-

tion 2.5.1, to experimentally evaluate the effectiveness of our approach. DS1 consists of two

datasets: CSE-CIC-IDS2018 and NSL-KDD, both of which have been augmented using the

method described in Subsection 2.3.1.

68



3.2 Network Intrusion Detection via AI-Powered Deep Analysis

Table 3.2: Confusion Matrix of S1 Evaluation

Benign
5999
100%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

1
0%

0
0%

Bot
0
0%

6000
100%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

BruteForce-Web
0
0%

0
0%

58
95%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

BruteForce-XSS
0
0%

0
0%

0
0%

34
100%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

1
0%

0
0%

DDOS-HOIC
0
0%

0
0%

0
0%

0
0%

6000
100%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

DDOS-LOIC-UDP
0
0%

0
0%

0
0%

0
0%

0
0%

279
100%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

DoS-GoldenEye
0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

6000
100%

0
0%

0
0%

0
0%

0
0%

0
0%

DoS-Hulk
0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

6000
100%

0
0%

0
0%

0
0%

0
0%

DoS-SlowHTTPTest
0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

4491
100%

0
0%

0
0%

0
0%

DoS-Slowloris
0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

2373
100%

0
0%

0
0%

Infiltration
7
0%

0
0%

3
5%

0
0%

0
0%

0
0%

0
0%

0
0%

1
0%

0
0%

5989
100%

0
0%

SQL-Injection
0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

6000
100%

T
ru
e
L
a
b
el

Predicted Label

Table 3.3: Confusion Matrix of S2 Evaluation

DoS
6000
100%

0
0%

0
0%

0
0%

0
0%

Probe
0
0%

1874
100%

0
0%

0
0%

7
0%

R2L
0
0%

0
0%

151
100%

1
14%

9
0%

U2R
0
0%

1
0%

0
0%

6
86%

1
0%

Benign
4
0%

6
0%

0
0%

0
0%

5990
100%

T
ru
e
L
ab

el

Predicted Label

We built the PAID-based DeepInspector tool from the proposed method to evaluate our

method with the augmented datasets mentioned above. To evaluate PAID Algorithm 3.1,

we perform the two scenarios described as follows:

• Scenario S1: Use the augmented CSE-CIC-IDS2018 dataset to train PAID. Four main

performance metrics are used to evaluate the performance of PAID. Moreover, we also

measure the performance of each model constituted to PAID.

• Scenario S2: In this scenario, we evaluate the PAID based on NSL-KDD, augmented

from the NSL-KDD dataset, with the same method. However, NSL-KDD has only 41

features and four classes. Among those attributes, ‘duration’ is considered redundant

and removed in this dataset. Two features ‘protocol type’, ‘service’ are used as

categorical variables and the 38 others features (flag, src bytes, dst bytes, land, wrong -

fragment, urgent, hot, num failed logins, log- ged in, num compromised, root shell,

su attempted, num root, num file creations, num shells, num acce- ss files, num out-

bound cmds, is host login, is guest login, count, srv count, serror rate, srv serror -

rate, rerror rate, srv rerror rate, same srv rate, diff srv rate, srv diff host rate, dst -

host count, dst host srv count, dst host same srv rate, dst host diff srv rate, dst -

69



3.2 Network Intrusion Detection via AI-Powered Deep Analysis

Table 3.4: Performance Evaluation based Network Intrusion Detection

Metric
S1 (CSE-CIC-IDS2018) S2 (NSL-KDD)

DNN XGB GBM PAID DNN XGB GBM PAID

Acc 99.73 99.58 99.74 99.97 98.80 99.66 99.43 99.69

Prec 99.80 99.59 99.59 99.97 98.84 99.66 99.44 99.69

F1 99.66 99.58 99.58 99.97 98.80 99.66 99.43 99.69

Rec 99.73 99.58 99.58 99.97 99.80 99.66 99.43 99.69

AUC 99.96 100 100 100 99.84 100 99.92 99.99

host same src port rate, dst host srv diff host rate, dst host serror rate, dst host -

srv serror rate, d- st host rerror rate, dst host srv rerror rate) considered as contin-

uous variables of DNN model. Thus, the DNN settings in this scenario have to change

the input of Layer 1 to 41 features and the output of the Classification layer to 4.

3.2.6.1 S1 Results

As mentioned above, the purpose of using the CSE-CIC-IDS2018 dataset is to objectively

compare the effectiveness of PAID with methods in other studies that also use the same

CSE-CIC-IDS2018 dataset. The confusion matrix illustrates the results of our experiment

performed with the PAID method, shown in Table 3.2. Moreover, we also implement

the DNN, GBM, and XGB methods and compute all their performance metrics, such as

accuracy, precision, and F1-score, etc. Consequently, we present the evaluation results in

the first part of Table 3.4.

In this scenario, 3/6000 Infiltration attacks are denoted as BruteForce−Web; 1/6000

Infiltration attacks are defined as DoS − SlowHTTPTest; 1/35 Brute− Force−XSS

attacks are defined as Infiltration and 1 Benign flows are considered intrusion. The

false negative rate is low: only 7 Infiltration attacks (in total 43, 236 attacks) are not

detected by PAID. Meanwhile, the false-positive rate is remarkable: only one benign flow

is considered an intrusion. In general, the accuracy of the DNN, XGB, GBM and PAID

models is 99.73%, 99.58%, 99.46% and 99.97%, respectively. These results confirm that our

proposed PAID method is the best.

3.2.6.2 S2 Results

Based on NSL-KDD, we use the augmented training set to train the DNN, XGB, GBM,

and PAID models and perform the prediction on the testing set. Note that in this case, the

PAID algorithm is set to four class labels corresponding to NSL-KDD. We consequently

70



3.2 Network Intrusion Detection via AI-Powered Deep Analysis

Table 3.5: Comparison of PAID with other SOTA methods

Method Acc Prec F1 Rec

CSE-CIC-IDS2018-based Evaluation

PAID (our) 99.97 99.97 99.97 99.97

WGAN+IDR [22] − 99 98 97

RANet [113] 96.73 − 96.59 96.73

Adaboost [55] 99.69 99.70 99.70 99.69

Autoencoder [21] 99.20 95.00 - 98.90

AUE [114] 97.90 98.00 98.00 98.00

DSSTE + miniVGGNet [68] 96.99 97.46 97.04 96.97

LSTM + AM + SMOTE [67] 96.20 96.00 93.00 96.00

NSL-KDD-based Evaluation

PAID (our) 99.69 99.69 99.69 99.69

Autoencoder [3] 99.20 - - 99.27

Multiple LSTM [52] 98.94 - - 99.23

SMO [49] 96.20 - - -

RANet [113] 83.23 − 82.57 83.23

DNN [105] 78.50 81.00 76.50 78.50

indicate this experiment results for the PAID as the confusion matrix shown in Table 3.3.

In more detail, we have the results of S2 with 1/161 R2L attacks labeled as U2R and 1/8

U2R attacks labeled as the Probe. The total attacks on the 17 network (including 7 Probe,

9 R2L and 1 U2R) are not detected by PAID, and 10 Benign flows are considered intrusion.

For the performance metrics for the three trained models, the accuracy for the DNN model

is 99.36%, for the GBM model it is 99.45% and for the XGB model it is 99.53%. Finally,

the PAID gets 99.69% of accuracy. All metrics allowing for evaluation results are shown

in the second part of Table 3.4. It also indicates that PAID has the greatest performance

compared to the other models.

3.2.7 Comparison with SOTAs

In favor of well-known datasets, such as NSL-KDD and CSE-CIC-IDS2018, our experiment

results can be compared with other SOTA methods. The comparison of intrusion detection

performance between PAID and SOTA is summarized in Table 3.5. It is clear that the F1

score and the accuracy of our PAID method reach the same 99.69% with the NSL-KDD

dataset, higher than the accuracy of all compared models, such as Adaboost Autoencoder

+ Softmax, which is 99.20% accuracy, or Multiple LSTM, which is 98.94% accuracy. With

71



3.3 Malware Detection via Mutual Deep and Boosting Ensemble Learning

the CSE-CIC-IDS2018 dataset, the accuracy of PAID is 99.97%; it is also higher than the

accuracy of other compared models; for example, the Adaboost has 99.69% of accuracy,

the DSSTE-niniVGGNet has an accuracy of 96.99%, or AUE has an accuracy of 97.90%.

Our experiments also indicate that PAID-based prediction has the same complexity and

analysis speed as DNN-based prediction with respect to deep analysis speed. This benefit

resulted from the concept of concurrent ensemble learning and performance. Consequently,

the accuracy, precision, and speed results demonstrate that PAID is currently the most

efficient learning model.

Based on experimental findings, the XGB and GBM models have the shortest execution

time compared to the DNN and PAID models. Moreover, the accuracy of the PAID ensem-

ble learning model is not significantly greater than that of the XGB model. Administrators

can select the ensemble learning PAID, XGB, or GBM model to investigate in-depth traffic

flows based on the network size, scope, and security level.

3.3 Malware Detection via Mutual Deep and Boosting

Ensemble Learning

3.3.1 Approach Direction

We represent executable files as binary feature vectors to construct a classifier for malware

detection. For this purpose, datasets often provide comprehensive features extracted from

real-world executables. With these datasets and features 1...n, we can construct a vector

X for each input sample such that X ∈ {0, 1}n. Xi = 1 indicates the presence of feature

X and Xi = 0 indicates its absence.

Let’s assume that the probability outputs of n AI models for a feature vector f are

P1(f), P2(f),..., and Pn(f). In our method, we perform soft voting ensemble learning for

these above models following the formula: Pvoting = 1
n

∑n
i=1 Pi(f). Finally, we use soft

voting (Pvoting) as the base model and individual models (Pi) to perform stacked ensemble

learning.

We apply ensemble learning, including soft voting and stacking, to build binary clas-

sification models for malware detection. This approach also improves resistance against

evasive attacks that attempt to alter, obfuscate, or compromise the system. The method we

propose in this study is called MDOB, an acronym for “Enhancing Resilient and Explainable

AI-Powered Malware Detection using Feature Optimization and Mutual Deep+Boosting

Ensemble Learning.” Figure 3.3 illustrates the comprehensive architecture of our MDOB

method.

In MDOB, the first stage presented in Subsection 2.4.4, is feature optimization, with

the aim of reducing the number of features and identifying the most significant features to

improve the performance of AI models. Then, we combine ensemble voting and stacking

72



3.3 Malware Detection via Mutual Deep and Boosting Ensemble Learning

Voting & Stacking Ensemble Learning

Hyperparameter
Optimization

Original Dataset

Worst

Best 1

2

3

...

n

Feature Rank

Averaged SHAP
Values

SHAP Explainer

....

Model2

Model3

Modelm

Model1

Important Features

F1
F2

F3

...

Fn

Features List

Random Split Top Features

Training Set

CleaningExtracting Vectorizing Normalizing

Testing Set

M
et

a 
Tr

ai
ni

ng
 S

et

metam+1

meta...

metam

metai+1

metai

meta...

meta1

Feature Set Optimization

DLM1

...

DLMi

GBMm

GBMi+1

...

Training Individual
Models

opt_params
Meta-
Model

Mutual Deep+Boosting Inference

Benign

Malware

Meta-
Model

M
et

a 
Ve

ct
or

metam+1

meta...

metam

metai+1

metai

meta...

meta1DLM1

...

DLMi

GBMm

GBMi+1

...

Figure 3.3: Architecture of MDOB-based Malware Detection

learning methods to enhance the accuracy of the ML model. Thus, MDOB aims to detect

malware through the following main steps:

Step 1 : We begin by utilizing the techniques described in Subsection 2.4.1 to extract,

clean and vectorize the dataset. For example, the data are scaled using Equation 2.8. This

process yields a cleaned and normalized dataset ready for the next steps.

Step 2 : We optimize the feature set by applying Algorithm 2.3 to analyze and choose the

most significant features, thus reducing the data dimension for the training and detection

phase. By removing irrelevant features, the output improves the training and testing sets,

enabling more efficient training and testing in the subsequent steps.

Step 3 : Using the optimized feature from Step 2, we build the AI models using three

main ideas:

1. Combining multiple AI models, including deep models such as DNN, CNN, etc., and

gradient-boosting models to enhance resistance against alter, obfuscate, and improve

the accuracy of malware detection.

2. Developing an AI model that utilizes both ensemble voting and ensemble stacking to

enhance malware detection performance.

3. Performing inference-based malware detection to improve reasoning speed utilizing

multiple complementary AI models through a combination of DL and GBM.

Although MDOB is a comprehensive approach, within the scope of Chapter 3, we focus

mainly on methods to improve the performance of machine learning models, which is Step

73



3.3 Malware Detection via Mutual Deep and Boosting Ensemble Learning

3. The Subsection 3.3.2 will detail our mutual deep + boosting ensemble learning approach.

3.3.2 Mutual Deep and Boosting Learning

As analyzed and evaluated in Section 1.3, malware detection based on executable file

behavior analysis with AI models can currently be categorized into two main approaches:

using DL models or GBM models. However, relying solely on a single model or focusing only

on combining multiple models of the same type does not effectively detect different types

of malware. Therefore, in this study, we propose a mutual learning model that integrates

both the DL and the GBM models. The selection of DL and GBM models for our AI

framework will be determined using AutoML frameworks such as AutoGluon. AutoGluon

easily supports many AI models, including deep learning models like CNN and DNN, as

well as gradient boosting methods such as XGB, CBT, and GBM, all of which fit well with

the MDOB teamwork approach.

Moreover, AutoGluon offers automated hyperparameter tuning, model selection, and

performance optimization, which are essential for efficiently handling high-dimensional

datasets like EMBER. However, through empirical evaluation of the DL and GBM models,

we have observed that DL models generally do not achieve as high performance as GBM

models (as demonstrated in the experimental results in Subsection 3.2.6). Consequently,

our mutual learning approach will leverage multiple GBMs while selecting only the most

optimal DL model to maximize the strengths of each AI model type.

In particular, DL models are effective in identifying complex patterns, and GBM al-

gorithms are excellent at making firm decisions. Running them simultaneously speeds up

analysis and improves detection accuracy, leading to a stronger system that can quickly

adapt to new threats. By combining these methods, we can build a strong defense system

that adapts to cyber threats, enabling us to make real-time updates and improvements. This

framework strengthens our cybersecurity measures and helps organizations react proactively

to possible vulnerabilities.

Deep learning-based detection methods have recently gained popularity due to their

ability to automatically extract features from large datasets. These techniques, which

employ neural networks to increase the accuracy and efficacy of identifying patterns in

complex data, are essential for several applications, such as malware or intrusion detection.

We designed our CNN model for binary classification tasks, shown in Figure 3.4. The CNN

model architecture is defined as follows:

• Input Layer: The input shape is (columns, 1), where columns represents the number

of features.

• Convolutional Layer: Consists of 128 filters with a kernel size of 3 and ReLU activation.

• MaxPooling Layer: Downsamples the convolutional layer output with a pool size of 2.

• Flatten Layer: Flattens the previous layer’s output to a 1D tensor.

74



3.3 Malware Detection via Mutual Deep and Boosting Ensemble Learning

1D Convolution

MaxPooling1D

Flatten

2048

1024

512

256

128

64

32 DropoutSigmoid

Adam Optimizer

Epochs

Batch Size

Figure 3.4: Architecture of CNN Model

• Fully Connected Layers: This consists of several dense layers with decreasing units:

2048, 1024, 512, 256, 128, 64, and 32, all using ReLU activation.

• Dropout Layer: Apply dropout regularization with a dropout rate of 0.5 to prevent

overfitting.

• Output Layer: Consists of a single neuron with sigmoid activation, outputting the

probability of the positive class.

The Adam optimizer compiles the model with a learning rate and a binary cross-entropy

loss function. Accuracy is monitored during training. During training, we select the best

model based on validation accuracy. The CNN model aims to classify input data into one

of two classes based on the features provided.

This step aims to enhance the accuracy and effectiveness of detection systems by using

machine learning techniques. It consistently improves the performance of detection tasks

in a wide range of settings by combining several ML models into a single strong model.

3.3.3 Combination of Voting and Stacking Ensemble Learning

Our approach integrates voting and stacking learning to construct a more robust model

using multiple AI-based classifiers. The method first applies soft voting to combine prob-

ability predictions from different AI models and then uses stacking to train a new model.

This two-layered ensemble strategy improves predictive performance and generalization by

taking advantage of the complementary strengths of the individual base learners.

In particular, the algorithm takes as input a training dataset TD with an optimized

feature set OFS. It first trains a set of AI models MS = {M1,M2, . . . ,Mm}, then uses

the soft voting method to aggregate the predictions and generate a new meta-training set

MTD, which is subsequently used to train a meta-model MM . During the training phase

75



3.3 Malware Detection via Mutual Deep and Boosting Ensemble Learning

Algorithm 3.2 VSEL: Combination of Voting and Stacking Ensemble Learning

Input: TD = {(X i, yi)}Ni=1 - training dataset with optimized features; MS =

{M1,M2, ...,Mm} - set of m base models; model params - optimized hyperparameters of

m AI models; K - number of folds for building meta training dataset (MTD).

1: MTD ← ∅ ▷ Init MTD

2: {TD1, TD2, ..., TDK} ← Split(TD,K) ▷ Split the training dataset into K folds

3: for each fold k ∈ 1..K do

4: TDtrain ← TD \ TDk; TDval ← TDk ▷ Use K − 1 folds for training and 1 fold

for validation

5: for each Mi ∈MS do

6: Mi ← Train(Mi, TDtrain,model params[Mi])

7: end for

8: for each (X, y) ∈ TDval do

9: meta← ∅; vote sum← 0 ▷ Create the meta-feature vector

10: for each Mi ∈MS do

11: pi ←Mi(X) ▷ Predict the probability for X using the trained base model

Mi

12: meta.push(pi)

13: vote sum← vote sum+ pi

14: end for

15: pvote ← vote sum/m ▷ Calculate soft voting prediction from all base models

16: meta.push(pvote) ▷ Add soft voting result as an additional feature m+1 in the

meta-layer

17: MTD.push(meta, y) ▷ Add the meta-feature vector and corresponding label to

MTD

18: end for

19: end for

20: MM ← AutoML.SelectBestModel(MTD) ▷ Perform AutoML on MTD to select the

best as the meta model

21: for each Mi ∈MS do

22: Mi ← Train(Mi, TD,model params[Mi]) ▷ Retrain all base models on the whole

training dataset to be used in final prediction

23: end for

Output: MS - n trained AI models; MM - trained meta model.

for the base model, we employ techniques such as cross-validation to improve robustness

and mitigate overfitting. Each model in the set MS is trained with its own optimized

hyperparameters. This process is illustrated in Algorithm 3.2.

Furthermore, adversary attacks often employ obfuscation and deformation techniques

76



3.3 Malware Detection via Mutual Deep and Boosting Ensemble Learning

to generate new types that can evade malware detection methods. However, our method

combines multiple ML models and ensemble learning techniques to detect malware; this

allows us to test an input PE file that embeds malware in these models. If this model fails

to detect malware, other models may be able to detect it. This work creates the ability to

detect and prevent adversary attacks [24].

3.3.4 Hyperparameter Optimization

To optimize ML models in our approach, such as training individual models, we use Optuna

[6] to find the best parameters for each model, ensuring that their performance is maximized.

This work is done through Algorithm 3.3.

Algorithm 3.3 Hyperparameter Optimization using Optuna

Input: model - AI model; Dtrain = (Xtrain, ytrain) - training set; Dtest = (Xtest, ytest) -

testing set; Ntrials - number of trials; Ttimeout - optimization timeout; params - list of

hyperparameters.

1: function objective(trial)

2: model params← {p1, p2, p3, . . . , pn} ▷ Initialize dictionary of hyperparameters for

the model

3: for p ∈ params do ▷ Use Optuna to suggest hyperparameter values for each

parameter p

4: model params[p] ← trial.suggest ⟨parameter type⟩(“p”, ⟨min value⟩, ⟨max -

value⟩)
5: end for

6: clf ← model(**model params) ▷ Instantiate model with current parameters

7: clf.fit(Xtrain, ytrain) ▷ Train model on training data

8: preds← clf.predict(Xtest) ▷ Make predictions on testing data

9: metric← performance metric(ytest, preds) ▷ Compute evaluation metric

10: return metric

11: end function

12: Initialize an empty dictionary opt params = ∅
13: Optimize the objective function using Optuna:

14: study ← optuna.create study(direction = “maximize”)

15: study.optimize(objective, n trials=Ntrials, timeout=Ttimeout)

16: trial← study.best trial

17: opt params← trial.params ▷ Get optimized model parameters from the best trial

18: return opt params

Output: opt params - optimized hyperparameters.

Our method initializes an empty list to store the optimized model parameters (opt params).

Subsequently, it defines the objective function objective(trial), which assesses the perfor-

77



3.3 Malware Detection via Mutual Deep and Boosting Ensemble Learning

mance of the model with a specified set of hyperparameters. We define the parameters of the

ML model (params), which represent the hyperparameters for optimization. The algorithm

suggests hyperparameters for each parameter in params; then the model is instantiated with

the suggested hyperparameters and trained on the training data (Xtrain, ytrain). Predictions

are made on the testing data (Xtest), and a performance metric is calculated based on

actual labels (ytest) and predicted labels (preds). The algorithm returns the performance

metric as an objective value. We create a study object (study) and set the optimiza-

tion direction to“maximize”. The objective function (objective) is optimized by invoking

the study.optimize function with the specified number of trials (Ntrials) and the timeout

(Ttimeout), resulting in the best trial of the study. We then retrieve the optimized model

parameters (opt params) from the best trial.

Finally, the algorithm returns the optimized model parameters as an output. In sum-

mary, the algorithm quickly finds the best hyperparameters for a ML model by suggesting

that it use Optuna repeatedly and check how well it works on a validation set. Afterward,

it provides the set of hyperparameters that yield the best performance metric.

3.3.5 Experiments and Evaluation

For the experimental environment, we use the setup presented in Section 2.5. We use DS3,

prepared in Subsection 2.5.1, to experimentally evaluate the effectiveness of our approach.

DS3 consists of three datasets: EMBER2017, EMBER2018 and BODMAS datasets, which

have been augmented using the method described in Section 2.4. Based on the MDOB

method described in Section 3.3, we successfully built the AI-powered malware detection

tool. We conducted two scenarios to evaluate MDOB, as detailed below.

• Scenario S1: The focus is on using the EMBER2018 dataset to evaluate our proposed

MDOB method. We consider this dataset to be more challenging than its previous

iteration. We use this scenario to assess the effectiveness of our models and compare

them with other recent methods.

• Scenario S2: We evaluated our proposed MDOB method using the BODMAS dataset.

We consider the BODMAS dataset as an additional benchmark that complements the

EMBER datasets by offering malware samples from a more recent time. BODMAS

dataset also brings in different types of malware and gives us samples with timestamps,

which helps us analyze changes over time and check how well our models handle new

malware threats. This scenario allows us to examine the generalization capability of

our models when applied to newer datasets beyond the EMBER dataset series.

Based on the hyperparameters tuned above, we get a prediction from all models simulta-

neously. After that, we calculate the prediction of the averaging probability from the child

model, and we use the argmax function to identify the label with the highest probability,

thus achieving optimal final results.

78



3.3 Malware Detection via Mutual Deep and Boosting Ensemble Learning

3.3.5.1 S1 Results

Similarly to EMBER2017, we ran the model without hyperparameters and tuned it around

the initial parameters for EMBER2018. Unlike EMBER2017, the initial accuracy could not

be better this time. The increased complexity of EMBER2018 compared to its previous

version partly explains this. We focused on fine-tuning for all models.

For example, Figure 3.5 shows the fine-tuning of the CNN model, using 512 epochs,

a batch size of 64, and a validation split of 10%. The model quickly fits the training

set, with the loss approaching zero and the accuracy nearly reaching 100%. However,

the validation loss fluctuates heavily and increases with more epochs, while the validation

accuracy stabilizes around 97–97.5% without further improvement. This indicates a clear

overfitting, where the model memorizes the training data but does not generalize to unseen

samples. This observation explains why CNN in Figure 3.6 underperforms compared to

boosting models, which are more stable on tabular features. The results highlight that CNN

is not optimal when applied directly to EMBER2018 and requires additional strategies such

as regularization, early stopping, or integration of the ensemble to improve generalization.

The accuracy for the XGB model is 97.68%, the CBT model is 97.52%, the GBM model

is 97.89%, the CNN model is 95.90%, and the voting of these models is 97.89%. Finally,

MDOB obtains the accuracy of 98.14%.

Figure 3.6 compares the F1-score of different models on the EMBER2018 dataset using

565 features. The results indicate that boosting-based models achieve high and stable

performance, ranging from 97.5% to 97.9%, with LightGBM slightly outperforming the

others. In contrast, CNN yields the lowest result ( 95.7%), reflecting the limitations of deep

learning architectures when applied directly to tabular features extracted from PE files. In

particular, the ensemble methods further enhance performance: Soft voting reaches about

98.0%, while stacking achieves the highest score at 98.1%. These findings confirm that

the integration of multiple models can take advantage of the complementary strengths of

individual algorithms, mitigate their weaknesses, and ultimately deliver superior accuracy

and robustness for malware detection.

The results also indicate that CNN is less effective in malware detection than other

approaches, which exhibit the miss rate FNR at 4.81%. In contrast, MDOB achieves

the lowest FNR at 2.32%, highlighting the effectiveness of ensemble models in improving

detection accuracy, making it the most reliable method to minimize undetected malware.

Meanwhile, GBM, CBT, and XGB have moderate FNRs ranging from 2.5% to 2.6%,

indicating that they are slightly less effective than MDOB in reducing false negatives.

3.3.5.2 S2 Results

We ran the models on BODMAS without extensive hyperparameter tuning, similar to what

we did with EMBER2018. Compared to EMBER datasets, BODMAS has newer types of

malware and different time patterns, which shows that malware detection is changing.

79



3.3 Malware Detection via Mutual Deep and Boosting Ensemble Learning

Figure 3.5: CNN Training Performance based EMBER2018 (565 features)

CB
T

XG
B

CN
N

G
BM

So
ft
Vo
tin
g

St
ac
ki
ng

95

96

97

98

99

F
1-
S
co
re

(%
)

Figure 3.6: EMBER2018-based Performance on 565 Features

However, it does not have standard feature definitions and only includes feature vectors

without harmless files because of copyright problems, making it hard to fully reproduce the

results. For this experiment, we used the feature sets selected by SHAP at threshold 0.01,

specifically the 4-feature (intersection) and 165-feature (union) subsets.

The results, summarized in Table 3.6, show a noticeable gap in the model performance

between the minimal feature set (4 features) and the enriched feature set (165 features).

Specifically, with 165 features, the XGB model achieves an accuracy of 99.39%, the CBT

model reaches 99.37%, the GBM model achieves 99.26%, and the CNN model obtains

99.26%. The soft voting ensemble further improves performance to 99.42%, while MDOB

achieves the highest accuracy at 99.46%.

Figure 3.7 presents the F1-score performance of XGBoost, CatBoost, LightGBM, CNN,

and two ensemble methods on the BODMAS dataset using 165 features. The results

reveal that all models achieve consistently high performance, ranging narrowly from 99.1%

80



3.3 Malware Detection via Mutual Deep and Boosting Ensemble Learning

XG
B

CB
T

G
BM CN

N

So
ftV
ot
in
g

St
ac
ki
ng

85

90

95

100

F
1-
S
co
re

(%
)

Figure 3.7: BODMAS-based Performance on 165 Features

Table 3.6: Evaluation of AI models based Malware Detection (%)

Learning Method F1 Acc Prec Sens FAR FNR F1 Acc Prec Sens FAR FNR

BODMAS (165 features) EMBER 2018 (565 features)

Baseline

XGB 99.28 99.39 99.28 99.28 0.61 0.72 97.67 97.68 97.97 97.37 2.17 2.63

CBT 99.26 99.37 99.29 99.23 0.71 0.77 97.52 97.52 97.58 97.46 2.26 2.54

GBM 99.13 99.26 99.09 99.16 0.74 0.84 97.88 97.89 98.34 97.42 2.16 2.58

CNN 99.13 99.26 99.02 99.24 0.76 0.74 95.72 95.90 95.64 95.19 4.08 4.81

Mutual DLM+GBM Voting 99.32 99.42 99.34 99.30 0.66 0.70 98.02 97.89 98.38 97.65 2.03 2.35

Mutual Voting+Stacking MDOB 99.37 99.46 99.48 99.26 0.54 0.74 98.13 98.14 98.58 97.68 1.93 2.32

to 99.3%. Among the base models, XGBoost, CatBoost, and CNN achieve nearly identical

scores, with only marginal differences at the decimal level. LightGBM records a slightly

lower score, though the gap is negligible. Ensemble methods continue to provide incremental

benefits: soft voting outperforms individual models, while stacking achieves the highest

result, approaching 99.4%. These findings suggest that when the feature set is already

well-refined (165 features), the performance differences among individual models diminish.

However, ensemble approaches remain valuable as they exploit the complementary strengths

of different models, yielding an optimal and more stable detection performance.

F1 scores exhibit a similar trend, and MDOB achieves the best F1 scores of 99.37%

(165 features). MDOB greatly reduced the false negative rate (FNR) to 0.74% when using

165 features, showing that the ensemble methods are very effective in improving detection

abilities.

3.3.6 Comparison with SOTAs

The comparison of malware detection implementations between MDOB and SOTA is sum-

marized in Table 3.7. The accuracy of our MDOB method reaches 98.14%, higher than the

accuracy of all the compared methods, such as dualFFNN k-medoids [94], which is 98.02%

81



3.4 Summary

Table 3.7: Comparison of MDOB with SOTA Methods (%)

Method Venue Acc Prec F1 Sens

EMBER2018

MDOB (our) - 98.14 98.58 98.13 97.68

AutoML [20] Computers & Security 2024 95.80 − 95.80 −
dualFFNN k-medoids [94] Computers & Security 2023 98.02 − − −
Consensus [80] CMC 2023 96.77 − 96.77 −
DL [10] Telecom 2023 95.57 − − −
MLMD [86] CAI 2023 97.42 − − −
DNN [59] IJNIS 2022 94.09 90.14 88.66 88.85

BODMAS

MDOB (our) - 99.46 99.48 99.37 99.26

EII-MBS [48] Computers & Security 2022 99.29 98.26 94.23 98.07

MD-ADA [17] Computers & Security 2024 99.29 − 99.13 −
FCG-MFD [45] JNCA 2025 99.28 − 99.14 −

of accuracy, or AutoML [20], 95.80% of accuracy; it is also higher than the F1-score of

other compared models; for example, DNN [59] has 88.66% accuracy, and the consensus

[80] has an accuracy of 96.77%. On the BODMAS dataset, our MDOB method achieves

an accuracy of 99.46%, which is higher than all other compared methods using the same

dataset, such as MD-ADA [17] with 99.29%, EII-MBS [48] and FCG-MFD [45] both with

99.28%. Moreover, MDOB maintains the lowest false alarm rate (0.54%) and achieves

the highest F1-score (99.37%) among all models evaluated. Consequently, the accuracy,

precision, and speed results demonstrate that MDOB is currently the most efficient learning

model.

3.4 Summary

In this chapter, we focus on improving the performance and robustness of intrusion and

malware detection systems through ensemble learning and mutual interaction among ma-

chine learning models. Building on the enhanced datasets developed in Chapter 2, this

chapter addresses the limitations of individual models and proposes a unified framework

that takes advantage of the complementary strengths of both deep learning and modern

boosting algorithms.

The chapter begins by analyzing the challenges faced by conventional classifiers such as

convolutional neural networks (CNNs) and standalone boosting algorithms (e.g., XGBoost,

LightGBM, CatBoost). Although deep learning models are highly effective at extracting

82



3.4 Summary

complex features from raw or structured data, they often suffer from instability and lack

of interpretability, especially under imbalanced or adversarial data conditions. In contrast,

boosting models are generally more stable and interpretable, but are limited in their ability

to recognize highly complex and nonlinear attack patterns.

To overcome these limitations, we introduce a mutual ensemble inference framework

that combines deep learning and boosting via two strategies: soft voting and stacking

meta-learning. In this framework, deep and boost models are trained on the augmented

and balanced datasets from Chapter 2. The soft voting approach aggregates predictions

from all base models to enhance stability and consistency, while stacking employs a meta-

classifier to learn from the outputs of the base models, thereby improving accuracy and

adaptability.

We conduct comprehensive experimental evaluations on multiple benchmark datasets for

both network intrusion detection and static malware detection. The results demonstrate

that the hybrid ensemble approach significantly outperforms both individual model base-

lines and the most advanced current methods, achieving superior accuracy, adaptability

to rare classes, generalization to unseen attacks, and robustness to noise or adversarial

data. The experiments also show that this method increases stability and enhances system

resilience; when one model fails, others may succeed; this is a key strength of the proposed

approach.

These research results have been partially presented in published works, including two

articles in respected journals (VVH-J1, VVH-j3) and two conference papers (VVH-C1,

VVH-C3), highlighting the novel and significant contributions discussed in this chapter.

Specifically, VVH-J1 and VVH-C1 introduce and evaluate the mutual ensemble inference

framework that combines deep and boosting learning to enhance the effectiveness of network

intrusion detection. Meanwhile, VVH-j3 and VVH-C3 provide a detailed presentation of the

integration of these ensemble methods, as well as performance analysis in malware detection

tasks. In general, the content of these publications demonstrates the originality and scientific

significance of the research, laying the foundation for the deployment of large-scale network

systems discussed in the next chapter.

83



Chapter 4

Holistic Large-Scale AI-powered Intrusion

Prevention with Flow Sensing Strategy and

Parallel Ensemble Inference

After proposing methods to balance the dataset and develop detection models in previous

chapters, Chapter 4 shifts its focus to implementing these achievements in practice by de-

signing and deploying an effective intrusion detection and prevention system for large-scale

network environments. At this stage, the emphasis moves from “models and algorithms” to

“system design and real-world application,” where critical strategies such as flow sensing,

high-speed processing methods, rapid response capabilities and sandbox-based malware

analysis play a decisive role in transforming research results into practical value. This

chapter evaluates the overall effectiveness of the entire process, while also providing a

comprehensive perspective on scalability, quick adaptability, and efficient deployment in

today’s real-world scenarios.

4.1 Problem Statement

Although previous chapters have focused on improving the quality of data and models,

real-world deployment of AI-based IDS systems introduces a new dimension of challenges.

In operational environments, timeliness and scalability are critical constraints. Detection

models must not only be accurate, but also be able to make decisions in real time and under

resource constraints [25].

In the context of increasingly complex network environments, the demand for proactive

defense against cyber threats has driven the development of AI-based intrusion detection

and prevention systems (IDS/IPS). However, deploying such systems in large-scale real-

world networks presents unique challenges in terms of performance, latency, scalability,

and resilience against sophisticated attack techniques.

Traditional intrusion detection approaches including signature-based, rule-based, and

even standalone deep learning models have inherent limitations. Signature-based methods

typically only detect known threats and struggle to adapt to novel or previously unseen

attacks. In contrast, modern AI models, especially deep learning, show promise for anomaly

and zero-day attack detection but require significant computational resources, making real-

time processing difficult in large-bandwidth networks [17]. Furthermore, many current

systems assume a static data pipeline and lack the ability to adapt in real time, leading to

84



4.1 Problem Statement

poor performance when confronted with dynamic traffic patterns or evolving stealth attack

vectors.

Another challenge is the gap between the performance of the offline model and the

real-world defensive capability after deployment. Evasive, adversarial attacks or previously

unseen anomalous traffic can cause many AI models to become unstable or even ineffective

compared to their performance in controlled laboratory environments.

In particular, proactive prevention differs fundamentally from detection alone by requir-

ing extremely low-latency decision-making, often in user space to maintain both accuracy

and scalability. This requires system architectures that are lightweight, highly parallelized,

and capable of context-sensitive flow sensing, so that computational resources are prioritized

for high-risk flows while avoiding unnecessary overhead in regular traffic.

Although several approaches have attempted to address these issues, most current solu-

tions suffer from trade-offs: sacrificing accuracy for speed, focusing solely on detection while

overlooking proactive defense, or failing to optimize for large-scale, real-world deployments.

Very few solutions simultaneously achieve the goals of accuracy, real-time responsiveness,

scalability, resilience, and adaptability.

From this practical perspective, the central research problem can be stated as fol-

lows: How can we design an AI-powered intrusion prevention system that is

operationally viable, ensuring high-throughput real-time processing, robust

detection accuracy, scalability, and resilience to sophisticated attacks in large-

scale network environments?

To address this question, this dissertation focuses on proposing a proactive AI-based

defense architecture that integrates multiple key components:

• Integration of flow sensing strategies to dynamically determine inference needs.

• Real-time system evaluation under emulated large-scale traffic with emphasis on la-

tency, accuracy, and deployment feasibility.

• The design of NetIPS: a user-space intrusion prevention architecture with parallel

inference across core models.

The goal is to build a holistic defense system ready for deployment in large-scale net-

works, providing high performance, reliability, and strong adaptability. To validate the

effectiveness of the proposed solution, this research conducts extensive experiments on

large-scale datasets and realistic network simulation environments, benchmarking latency,

accuracy, scalability, and overall defensive efficacy against current state-of-the-art methods.

85



4.2 Proposed Holistic Intrusion Detection Framework

4.2 Proposed Holistic Intrusion Detection Framework

4.2.1 Approach Direction

In reality, deploying an IDPS system on a network in inline mode presents several obstacles.

Thus, inspecting all traffic in detail to detect anomalies is impossible, particularly for

ML/DL methods and large-scale network traffic with a throughput of 10Gbps or even

100Gbps. Our comprehensive intrusion detection approach uses deep AI-powered analysis

to identify anomalous behavior and signatures of previous intrusions, namely APELID, as

illustrated in Figure 4.1 and Algorithm 4.1. To ensure high-throughput network traffic,

this method combines three core inspectors based on the shallow, AI-powered deep analysis

and Sandbox. The shallow analysis uses a ruleset based on known intrusion signatures to

inspect all traffic flows on the network. However, the AI-powered deep analysis focuses

only on flows that do not match any rule in the current IDPS ruleset. Meawhile Sandbox

focuses to detect malware file that transmit between networks. To increase resilience when

conducting deep analysis in large-scale networks, our approach is to control and trigger the

AI-Powered deep analysis regularly using a flow-sensing mechanism that samples the traffic

flows depending on two factors: sampling cycle and duration.

The traffic assessment is conducted as described below. First, network traffic is captured

in both the receiving and transmitting directions, and then decoding is performed. Next, we

apply rule-based detection to network traffic to determine known attacks. Each rule has a

unique pattern or signature that identifies malicious network traffic. Network traffic will be

analyzed and granted four actions based on the protocol: (i) drop the packet; (ii) reject the

packet (discard the packet and notify the source that sent the packet); (iii) alert and allow

to pass the packet; and (iv) pass without warning. The remaining case, denoted by ‘Other’,

corresponds to network traffic flows that do not match rules. Our primary objective in deep

inspection is to identify anomalous network traffic behavior using AI-powered analysis.

The Signature-Based Detector and the flow-sensing strategy are deployed in a tra-

ditional IDPS, such as Suricata, Snort, or Zeek. Traditional IDPS has to be fine-tuned

in order to be able to capture “Other” flows regularly by using the global setting variable

“Sensing” to perform AI-powered analysis in DeepAnalyzer.

For large-scale networks, we propose a flow-sensing mechanism that periodically sam-

ples network traffic to prevent analysis bottlenecks. Our concept of periodic sampling is

described as follows: for each cycle T , capture all flows corresponding to the ‘Other’ instance

in a δ interval. Those flows are typically represented by the ‘PCAP’ format and will be

sent to DeepAnalyzer within a interprocess communication (IPC) mechanism by using a

Unix socket. Our flow-sensing mechanism is described in more detail in Subsection 4.2.3.

The extraction of network traffic flows described above does not affect the processing of

network traffic flows corresponding to the Other case. It indicates that the deep analysis

process does not obstruct or discard network traffic. However, AI-powered deep analysis

86



4.2 Proposed Holistic Intrusion Detection Framework

Notificator &
Mitigator

Drop
Reject

Alert

Real time
Traffic In

Traffic Out

DeepAnalyzer

0. Benign

score > 7
Y

Alert
Pass     Other

Sensing
Y

Signature-Based Detector

Other

File Extraction
FileStore

Monitoring and
Submitting

new Files

W
eighted Voting

PELID

CBT

DNN

BME

GBM

XGB

labelID > 0
Y

N

1. Bot

2. BruteForce-Web

3. BruteForce-XSS

4. DDoS-HOIC

5. DDoS-LOIC-UDP

6. DoS-GoldenEye

7. DoS-Hulk

8. DoS-SlowHTTPTest

9. DoS-Slowloris

10. Infiltration

11. SQL-Injection

IoC Updater

MalwareAnalyzer

Database
Create Task

Check if any
VMs  are
available

Task Scheduler

H
ost

Feature Engineering

IoC, Signatures

Traffic Capture Flow Featurization

Analysis VM3

Analysis VM1
Analysis VM2

Figure 4.1: Architecture of Holistic Intrusion Detection

concentrates on anomaly detection and updating the IDPS ruleset with new signatures to

prevent network attacks. In addition, the alert provides information for the administrator

to have a plan for early network attack mitigation.

Moreover, to improve the ability to detect malicious files transferred over the network,

our proposed APELID solution is integrated with aMalwareAnalyzer based on a sandbox

approach as illustrated in Figure 4.1. The MalwareAnalyzer is assumed to perform both

static and dynamic file analysis to identify malware threats. Our method for detecting

malicious files transmitted by the network is as follows. IDPS will initially acquire network-

transmitted files and store them in the FileStore folder. Then, we construct a Python

program that periodically examines the folder FileStore for new files. Therefore, all new

files are automatically submitted to MalwareAnalyzer for sandbox-based malware analysis.

4.2.2 Parallel Ensemble Inference-based Intrusion Detection

Two ideas motivated our intrusion detection method: the ensemble learning approach and

parallel computing. The first proposal tries to improve the quality of intrusion detection,

while the second helps to reduce the latency of intrusion detection. As a result, the intrusion

detection approach suggested in our study is known as PELID, which stands for “Parallel

Ensemble Learning for Intrusion Detection.”

As described in [40, 72, 56, 110], the most effective new AI models for intrusion detection

are DNN, XGB, CBT, GBM, and BME. In addition, as illustrated in Table 1.2, the accuracy

and F1-score results for intrusion detection of these models currently exceeded 98%. Thus,

it predominantly affects our selection of these models for our PELID ensemble.

In PELID, the combination of numerous AI models is performed by soft-voting method.

However, the effect of each individual model is regulated by a weighted score (ωi ∈ (0, 1) )

87



4.2 Proposed Holistic Intrusion Detection Framework

Algorithm 4.1 Holistic intrusion Detection by flow sensing strategy and deep analysis
Input: f - Traffic In Flow, S - Signature Set, Sensing - perform AI-powered deep analysis

or not, F - Files that transfer between network.

Output: f,msg, S - (Traffic Out Flow; Alert Message; Updated Signature Set)

1: action← RuleBasedDetector(f, S)

2: IoCset ← ∅
3: if action = Drop/Reject then ▷ Drop/Reject flow due of a detected critical attack

4: Drop/Reject(f)

5: msg ←′ CriticalAttack′

6: return (none,msg, S)

7: else if action = Alert then ▷ Generate an alert

8: msg ←′ Alert based on Signature′

9: else if action = Pass then ▷ Stop further inspection of the flow

10: msg ← None

11: else if Sensing = True then ▷ f does not match any rules, then AI-powered deep

analysis is triggered by the sensing mechanism

12: (msgdeep, IoCdeep)← DeepAnalyzer(f) ▷ Inspect F deeply by PELID and return a

message and new IoC if an intrusion attack is detected.

13: IoCset ← IoCset ∪ IoCdeep ▷ Update IoCset with new indication of compromise

IoCdeep

14: end if

15: for each t ∈ F do

16: (msgt, IoCt)←MalwareAnalyzer(t) ▷ Analysis t deeply by Sandbox return a

message and new IoCt if an malware file is detected.

17: IoCset ← IoCset ∪ IoCt ▷ Update IoCset with new indication of compromise IoCt

18: end for

19: S ← S ∪ IoCset ▷ Update S with new indication of compromise IoCset

20: return (f,msg, S)

on the overall PELID model. In general, with n AI models, the total sum of these scores

must be 1:
∑n

i=1 ωi = 1. All of these scores will be determined experimentally in order to

identify the optimal combination of a variety of AI models. Consequently, Algorithm 4.2

shows our PELID algorithm.

In Algorithm 4.2, the network traffic flow is first captured, extracted, and modeled by

a feature vector F . In this step, the CICFlowMeter tool [97] can be used and return

a vector of 83 features for each flow. Next, F will be cleaned by removing unused fea-

tures and normalizing the rest. With CICFlowMeter explicitly, this step retains only 73

features by eliminating [FlowID, SrcIP, SrcPort, Label, BwdPSH - Flags, BwdURGFlags,

FwdByts/bAvg, FwdPkts/bAvg, FwdBlkRateAvg, BwdByts/bAvg]. Among them, two fea-

tures [DstPort, Protocol] are used as categorical variables and the rest 71 are considered

88



4.2 Proposed Holistic Intrusion Detection Framework

Algorithm 4.2 PELID: Parallel Ensemble Learning-based Intrusion Detection

Model: XGB, GBM , CBT , BME, DNN - XGB, GBM, CBT, BME and DNN trained

model, and their ensemble weight ωi where
∑5

i=1 ωi = 1.

Input: f - traffic flow.

Output: (msg,R) - (alert messages; new generated rules)

1: R← ∅
2: F ← Featurize(f) ▷ Extract features of traffic flow f .

3: Fin← Normalize(F ) ▷ Perform the feature engineering: remove unused features and

normalize the rest.

4: Cats← [DstPort, Protocol] ▷ Categorical variables

5: Conts← Fin \ Cats ▷ Continuous variables

6: Perform in parallel five processes P1, P2, P3, P4, P5:

7: P1: pXGB ← XGB.predict(Cats, Conts) ▷ Perform the prediction using XGB.

8: P2: pGBM ← GBM.predict(Cats, Conts) ▷ Perform the prediction using GBM .

9: P3: pCBT ← CBT.predict(Cats, Conts) ▷ Perform the prediction using CBT .

10: P4: pBME ← BME.predict(Cats, Conts) ▷ Perform the prediction using BME.

11: P5: pDNN ← DNN.predict(Cats, Conts) ▷ Perform the prediction using DNN .

12: Wait P1, P2, P3, P4, P5 finished.

13: scores← (pXGB ∗ ω1 + pGBM ∗ ω2 + pCBT ∗ ω3 + pBME ∗ ω4 + pDNN ∗ ω5)

14: FC ← scores.argmax(axis = 1) ▷ Get the flow predicted label.

15: if FC! = 0 then ▷ Classified as network attacks

16: msg ← Alert(FC, f) ▷ Generate an alert by using metadata from the flow f ; set

alert category being as predicted label.

17: R← RuleGenerator(FC, f) ▷ Generate a new signature based on its indicator of

compromise.

18: end if

19: return msg;R

continuous variables. It should be noted that all of the above steps are also used to prepare

the training set before training each AI model. Moreover, all AI models have to be trained

by using AWGAN augmented datasets before using PELID, which is present in Section 2.4.

Returning to the PELID algorithm, the normalized vectors are then fed into AI models

to run the prediction step. Here, in order to enhance the speed of intrusion detection,

AI-based predictions are performed in parallel. Concretely, in PELID, five P1, P2, P3,

P4, and P5 processes are run simultaneously to compute the probability of intrusion. In

the event that network activities under an intrusion attack are identified, PELID will send

an alert message to the administrator and generate rules in the form of an indicator of

compromise (IoC) to update the IDPS’s signature database.

89



4.2 Proposed Holistic Intrusion Detection Framework

4.2.3 Strategy for AI-powered real-time intrusion detection

When the AI-powered model for detecting intrusions is implemented, a large-scale traffic

network, such as an optical one, experiences significant network latency or bottleneck

congestion. We employ a rule-based engine to detect and prevent common network attacks.

The APELID will then concentrate on network traffic flows missed by the current rules-

based engine to decrease analysis time. It operates in two phases, as described in the

following sections:

Initially, a well-known IDPS, such as Suricata or Snort, is used to capture network

traffic in both the receiving and transmitting directions. Next, we use a rules-based engine

to analyze network traffic in order to detect and prevent known network attacks: drop,

reject, alert, and pass. APELID performing an in-depth analysis will identify abnormal

network traffic behavior for the remaining case, denoted by ‘Other.’

Second, during the in-depth analysis phase, the IDPS is modified to capture flows corre-

sponding to ‘Other.’ This flow data will be then analyzed by the PELID method to identify

one of the twelve labels: Benign, DoS-Slow HTTPTest, BruteForce-Web, BruteForce-

XSS, DDOS-LOIC -UDP, DDoS-HOIC, DoS -Hulk, DoS-GoldenEye, Bot, DoS -Slowloris,

Infiltration, SQL-Injection.

For large-scale network traffic, the deep analysis certainly causes the stuck of IDPS.

Therefore, we propose an efficient strategy to sense the traffic flows. Thus, we control

the periodic deep analysis sampling strategy using 6 variables: DI Cycle, DIC Min,

DIC Max, and DI Window, DIW Min, DIW Max. These parameters are all natural

numbers with units of seconds, and their meanings are as follows:

• DI Cycle: is the sampling cycle T for deep analysis. Suppose that this parameter has

a value equal to 0, and the IDPS system will include a deep traffic analysis with a

random cycle in the range of DIC Min,DIC Max. These default parameters are 60,

30, and 300 seconds, respectively.

• DI Window: is the window size for deep analysis. If this parameter is 0, the system

will capture the flows for deep analysis in a random window size from DIW Min to

DIW Max. The default value ofDI Window is 10 seconds, andDIW Min,DIW Max

is 1 and 30 seconds, respectively.

In IDPS, these parameters are selected and configured. The sampling cycle and duration

will determine the performance of IDPS for high-volume network traffic (throughput of

10Gbps or more). If DI Cycle is tiny or big DI Window, DeepAnalyzer must make more

predictions. It leads to increased latency and possibly causes bottlenecks. Consequently,

these parameters are also chosen based on the context of network throughput and IDPS’s

computing capacity.

In light of these findings, Figure 4.1 illustrates the system architecture necessary to inte-

grate our APELID into an inline IDPS. Note that if the DeepAnalyzer detects anomalous

network behavior, the IDPS will generate an indicator of compromise (IoC) and add it

90



4.2 Proposed Holistic Intrusion Detection Framework

Algorithm 4.3 Malware Detection

Input: F - New files transferred in network and accumulated in FileStore folder.

Output: (msg,R) - (Alert Message, New Rules generated based malware detected files).

1: Ready ← Wait Sandbox Ready ▷ Blocking-function until Sandbox is ready.

2: IngestF iles(F ) ▷ Send F in the FileStore folder to Sandbox

3: score = HybridAnalyzer(F ) ▷ Determine the overall score of both static and dynamic

analysis.

4: if score > 7 then ▷ Critical suspicious file

5: R← RuleGenerator(F ) ▷ Update the rule to block connection.

6: msg ← ‘Detected Malware F iles′

7: return msg,R

8: end if

to the signature-based ruleset of the IDPS. Consequently, it notifies the administrator of

current traffic flows and thwarts future network attacks of a similar nature.

4.2.4 Hunting Malware by Sandbox Approach

In order to improve the capability to detect malicious files transferred over the network,

our proposed APELID solution is integrated with a MalwareAnalyzer based on a sandbox

approach, as illustrated in Figure 4.1. Algorithm 4.3 illustrates our strategy to analyze and

identify this malware file. This will further enrich the IoC rule set based on domains, hosts,

and IP-Ports for a more proactive approach to detecting and preventing malware through

the IDPS system. For example, in cases where the IDPS cannot detect a malware file, the

MalwareAnalyzer can identify it and provide IoC indicators to complement the IDPS’s IoC

ruleset, thereby enabling detection and prevention in similar instances in the future. Thus,

it is assumed to perform both static and dynamic file analysis to identify malware threats.

Our method for detecting malicious files transmitted by the network is as follows. IDPS will

initially acquire network-transmitted files and store them in the FileStore folder. Then, we

construct a Python program that periodically examines the folder FileStore for new files.

Therefore, all new files are automatically submitted to MalwareAnalyzer for sandbox-based

malware analysis.

MalwareAnalyzer enables the deployment of a well-known sandbox, such as Cuckoo,

with two essential entities: the Host and the Agent. Each agent can be launched on a

virtual machine that has been quarantined (Analysis VM). The analysis VM will execute

the file and record its complete behavior. For further investigation, it can also identify

malware-associated behaviors, such as extracted artifacts, registry modifications, dropped

files, related processes, DLL library files in use, and network activity data.

MalwareAnalyzer also considers statistical analysis utilizing the Yara utility. Here, we

91



4.3 Experiments and Evaluation

investigate the file signatures, hashes, strings, and other data related to the suspicious file.

MalwareAnalyzer integrates with several additional malware analyzers, including Virus

Total.

Lastly, MalwareAnalyzer combines the static and dynamic analysis results and gives

the analysis report with a severity score of 0 to 10. If the severity score exceeds 7 in our

proposal, MalwareAnalyzer will send an alert to the administrator and collect file-related

information, such as the incoming IP address, domain, URL, etc. These data permit

the development of a new IoC-based rule and its incorporation into the IDPS signatures

database, thus preventing similar future threats. Consider a scenario in which the severity

score is less than 7, such as anti-executable malicious code on analysis virtual machines.

In this case, the results of the simulator analysis will also be sent to the administrator

to provide additional information. In some cases, human reverse engineering analysis is

required to assess the actual malware risk.

In particular, MalwareAnalyzer is not designed to prevent malware files in real time.

However, our method enables us to proactively enhance and improve the IDPS IoC and

signature database in response to future comparable threats.

4.3 Experiments and Evaluation

To demonstrate the performance of our method, we conducted a comprehensive experiment

to answer the following research questions:

1. RQ1: Does combining multiple AI models of PELID, both traditional ML and DL,

allow enhancing the performance of network intrusion detection and reducing analysis

time?

2. RQ2: When deploying an IDPS inline system in an intranet with large-scale network

traffic, is it fast enough to conduct a deep analysis of network flows for intrusion

detection with the AI model generated by the APELID method to ensure that network

flows are handled in real time?

3. RQ3: Is it possible to implement malware file detection in the inline IDPS system

combined with deep analysis based on the AI model?

Our rigorous experiments were conducted to answer the above research questions. The

following sections, in turn, detail the results we obtained while experimenting and evaluating

our APELID method. We use DS2, prepared in Subsection 2.5.1, to experimentally evaluate

the effectiveness of our approach. DS2 consists of two datasets: CSE-CIC-IDS2018 and

NSL-KDD, both of which have been augmented using the method described in Subsec-

tion 2.3.2.

92



4.3 Experiments and Evaluation

Table 4.1: Confusion Matrix of CSE-CIC-IDS2018-based PELID

Benign
6000
100%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

Bot
0
0%

6000
100%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

BruteForce-Web
0
0%

0
0%

78
99%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

BruteForce-XSS
0
0%

0
0%

0
0%

29
91%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

DDOS-HOIC
0
0%

0
0%

0
0%

0
0%

6000
100%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

DDOS-LOIC-UDP
0
0%

0
0%

0
0%

0
0%

0
0%

336
100%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

DoS-GoldenEye
0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

5999
100%

0
0%

0
0%

1
0%

0
0%

0
0%

DoS-Hulk
0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

6000
100%

0
0%

0
0%

0
0%

0
0%

DoS-SlowHTTPTest
0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

4082
100%

0
0%

0
0%

0
0%

DoS-Slowloris
0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

2093
100%

0
0%

0
0%

Infiltration
0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

6000
100%

0
0%

SQL-Injection
0
0%

0
0%

1
1%

3
9%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

13
100%

T
ru
e
L
a
b
el

Predicted Label

Table 4.2: Confusion Matrix of NSL-KDD-based PELID

DoS
6000
100%

0
0%

0
0%

0
0%

0
0%

Probe
0
0%

2484
99%

0
0%

0
0%

16
0%

R2L
0
0%

0
0%

185
98%

0
0%

6
0%

U2R
0
0%

0
0%

0
0%

4
100%

8
0%

Benign
0
0%

18
1%

4
2%

0
0%

5978
99%

T
ru
e
L
ab

el

Predicted Label

4.3.1 Experimental Results

For the experimental environment, we use the setup presented in Section 2.5. We im-

plemented the AGWAN and PELID algorithm and deployed them in an inline IDPS

to validate the four research questions mentioned above. Therefore, three scenarios are

proposed to evaluate our methods: CSE-CIC-IDS2018-based experiments, NSL-KDD-based

experiments, and a practical model for hunting malware in an IDPS using the sandbox

method.

The experiment process for both two datasets is the same. First, the augmented training

set is used to train five individual AI models of PELID. Then, the testing set is used to

assess not just the performance of the five AI models, but also the ensemble model PELID.

In addition, the experiment identifies all the evaluation metrics and measures the time

required to analyze each traffic flow using PELID-based intrusion detection. To avoid the

impact of other processes on the testing server, the time consumption of PELID is the

average value obtained from six separate prediction runs. The results obtained will be

summarized and evaluated in the next subsection.

93



4.3 Experiments and Evaluation

Table 4.3: Evaluation of AI models based PELID (%)

Metric
CSE-CIC-IDS2018 NSL-KDD

XGB CBT GBM BME DNN PELID XGB CBT GBM BME DNN PELID

F1 99.77 99.92 99.95 99.77 97.75 99.99 99.48 99.21 99.48 99.48 98.00 99.63

Acc 99.76 99.92 99.96 99.98 97.54 99.99 99.49 99.22 99.56 99.43 98.07 99.65

Prec 99.83 99.93 99.96 99.98 98.20 99.99 99.49 99.21 99.49 99.41 98.03 99.65

Rec 99.76 99.92 99.96 99.98 97.54 99.99 99.49 99.22 99.49 99.43 98.07 99.65

FPR 0 0 0.03 0 0.13 0 0.67 1.27 0.63 0.77 1.22 0.37

FNR 0 0.01 0 0 1.37 0 0.37 0.39 0.30 0.32 2.26 0.34

AUC 100 100 99.99 99.99 98.69 100 99.99 99.98 99.99 99.89 99.85 99.99

4.3.1.1 CSE-CIC-IDS2018-based Results

These experiments focus on evaluating our APELID method utilizing the CSE-CIC-IDS2018

dataset, augmented by CSE-CIC-IDS2018 by AWGAN, to train and evaluate AI models. In

this scenario, we trained all five specialized models and incorporated them into the PELID

model based on the GPU computing infrastructure mentioned above. After training, the

CSE-CIC-IDS2018 test set is used to evaluate both the five single models and the ensemble

model according to the five evaluation metrics. The detailed results of the CSE-CIC-

IDS2018 experiment are illustrated in the first part of Table 4.3 and the confusion matrix

shown in Table 4.1. In which, for the order of the labels from left to right in the predicted

label, they correspond to the order of the true labels from top to bottom.

All five individual models evaluated in this study achieved an F1-score of 99.77% or

above, indicating excellent performance. This demonstrates the excellent efficiency gains

in intrusion detection made possible by data augmentation using the AWGAN algorithm.

These experiment results show that 1/17 SQL−Injection attacks were identified as the

BruteForce−Web, 3/17 SQL−Injection attacks are denoted as the BruteForce−XSS,

1/17 SQL− Injection attacks are defined as the Infiltration, 1/6, 000 DoS−GoldenEye

attacks were identified as the DoS − Slowloris. All attacks flow (in 42, 635 total attacks)

are detected by the PELID. There are no false-positive in intrusion detection. In general,

the F1 score for PELID is 99.99% and its value is the same for other metrics of Acc, Prec,

and Rec.

4.3.1.2 NSL-KDD-based Results

Similar to the previous experiments with CSE-CIC-IDS2018, we also evaluate the APELID

proposed method with the NSL-KDD dataset. However, NSL-KDD contains four classes

and 41 features. ‘Duration’ was omitted from this dataset since it was deemed unnecessary

among those attributes. The remaining 38 features are considered continuous variables

in the DNN model, while two features, “protocol type” and “service,” are employed as

94



4.3 Experiments and Evaluation

Sanbo

DMZ

Mail

FTP

Attacker

Files

Switch

IDPS

FW

Database

Web Server

Sandbox

Figure 4.2: Malware Hunting Scenario

categorical variables. We train all five individual models with the NSL-KDD’s augmented

training set, just like we did with DS1. Both the five individual models and our PELID

ensemble model are then evaluated by the NSL-KDD test set. The second part of Table 4.3

shows the experimental results by using NSL-KDD dataset, and Table 4.2 presents the

PELID model’s confusion matrix. In which, for the labels of the predicted label, it is

similar to the confusion matrix of CSE-CIC-IDS2018 dataset.

The experimental findings shown in this scenario demonstrate the efficacy of individual

models in intrusion detection, with F1 values of 98% or higher. In particular, we can see

that the AWGAN algorithm has greatly improved the quality of the training data set by

confirming that all of the AUC measurements are more than 99.85%.

For our PELID method, its confusion matrix illustrated in Table 4.2 shows that the FNR

is 0.34%: total 30 network attacks (including 16 Probe, 6 R2L and 8 U2R) are not detected

by the PELID, and the FPR is 0.37%: 22 Benign flows are considered as intrusions.

4.3.1.3 Malware Hunting Results

This experiment scenario is designed to assess the sandbox-based malware hunting of

APELID method. Here, we utilize experimental data consisting of 80 benign and 20

malicious files. The benign files consist of Windows system software files obtained from a

newly installed Windows virtual machine and downloaded from reputable Internet sources.

The experimental study utilized downloaded malware files from public sources such as

https://bazaar.abuse.ch/ and https://virustotal.com/.

It is anticipated that the answer to our RQ3 will be a partial and temporary “YES”

because it can use dynamic analysis to detect malware behavior. It provides proof of concept

through the experiment that follows. To evaluate the intrusion detection capabilities of

sandbox analysis, we conducted experiments on a host system equipped with Ubuntu 20.04

LTS, an Intel i7 CPU clocked at 2.3 GHz, and 8 GB of RAM.

This scenario includes two completely separate networks: DMZ Network (including Web

server (HTTP and FTP), Mail Server (SNMP), and Attacks-Network), shown as Figure 4.2.

95

https://bazaar.abuse.ch/
https://virustotal.com/


4.3 Experiments and Evaluation

Table 4.4: Malware Hunting Results.

N Malware Type Hash VT APELID

1 QuasarRAT .exe 832ab3a898d188426d3541e1533b55f9 56/68 Yes

2 Loki .xlsx 5b6aec60c3be4724f7980a659206531a 29/58 Yes

3 STRRAT .jar 2199150e7d79d0e831cda314c7ce6f56 28/62 Yes

4 AsynRAT .doc da6419e4d4e4528990898bcfdaa85e01 32/60 Yes

5 SnakeKeylogger .exe 715b0f6390ba4387a4155c1d59a3669c 49/69 Yes

6 AgentTesla .exe 5c590fcb32aedec16532aa857eec28b5 40/66 Yes

7 OskiStealer .xlsx 6a9203346218dded19d0a8a1dee24023 20/59 Yes

8 NanoCore .exe 4bae18ac4a73ff38f7ed718365e6c2b2 41/67 Yes

9 DanaBot .exe 5f4731a4ef7d1484893213caaf6a6685 42/69 Yes

10 DCRAT .exe ea800644b9dfd027807447fdd98241aa 50/68 Yes

11 YellowCockatoo .dll df7b2ece343c52df774d72e12ea09009 51/69 Yes

12 RemoteManipulator .exe 4c5649e9b9a2d9997ac2600a804e0aeb 41/68 Yes

13 Pony .exe ab468a5b5cd9470c0895097efa2a687f 63/71 Yes

14 Stealc .exe cea30f806e644cebe48399eefa345e51 47/71 Yes

15 njRat .exe b17414d6949c2e013de14fdc268cfc89 65/71 Yes

16 RedLineStealer .exe 8a61e10948c23a9a5c353d28b8738490 35/71 Yes

17 Guildma .zip 8a61e10948c23a9a5c353d28b8738490 35/71 Yes

18 Gozi .js 1df2e7a13459223b2cc55b93744add77 24/71 Yes

19 DarkTortilla .exe 1c354a83f81063dc75612a9a7bd51225 54/71 Yes

20 VectorStealer .xlsx 5b47098a17ecd534de15df03b12beacb 40/71 Yes

We used 100 files, including 80 normal and 20 malware, to send to the DMZ Network and

to upload as administrator to the sandbox.

The IDPS automatically captured files transmitted between networks that used an

unencrypted protocol such as FTP or HTTP. We wrote a Python tool to automatically check

and send the files to the Sandbox-based analysis for malware hunting. We compared the

experimental results with Virus Total (VT), shown in Table 4.4, indicating that our custom

sandbox can detect common file types, such as .exe, .dll, and .jar. It demonstrates that we

can use the sandbox to detect malware file transfer between networks and proactively hunt

malware for suspicious files. Therefore, these results consolidate the affirmation of RQ3 by

using sandbox-based dynamic analysis of APELID.

4.3.2 Evaluation

This subsection aims to analyze the experimental results in order to respond to the four

research questions specified at the beginning of Section 2.5. We focus on evaluating the

performance of both the WGAN algorithm for improving the quality of the training set and

96

https://www.virustotal.com/gui/file/7d6cfc5cfb6243152ee28b41a00650c3c95cc3615a5407c6ec094632926b99e2
https://www.virustotal.com/gui/file/12e3736cdbc5f8fdfd9d4b02d19dafb58f3c9990964ee589eb4f18aaf3f75ef2
https://www.virustotal.com/gui/file/3617eb69a337e324ddc96340fbe2045da6c7635f83ff514dde6eeaba59bbea87
https://www.virustotal.com/gui/file/ad0972d2a239b3ba4cbe61079c530624e16e8e57159ce21796b3e711888c997d
https://www.virustotal.com/gui/file/e32e862a630ef89e4be2a6730c7c3ab966bf863942a2435839e6b2cd08714b23
https://www.virustotal.com/gui/file/61e5a9d4e73fd837d919eedcdf4afcca159875f4ec7b0a1a57c873c54c442c9c
https://www.virustotal.com/gui/file/5d34a073e711eefc35990e5f94d3eb9ff26a28e097707ed15ef9c6b421cb0aee
https://www.virustotal.com/gui/file/e73b03a58aaa3e066512e451603c4ffc2404ad373d83f70b12ddb1c5bbef620a
https://www.virustotal.com/gui/file/8a70f9b5ae2d2283111a69fc8db8b66656dbb82f08b089649033064ed59c6d8e
https://www.virustotal.com/gui/file/0b5a4d65bd3424391e5f9bc5b6247635b8097005edb07f35eee3aef1d73e1b64
https://www.virustotal.com/gui/file/a57eb7bfeac633b9312c6490499f40e654cb1b8d68388da4ce63314cd6abbbcc
https://www.virustotal.com/gui/file/1fb6087e4c6654baf677b60bf6f12b8a19e232e5e74713e6beb37678c674bf1c
https://www.virustotal.com/gui/file/d9e0be40db0545d6150990074f3c3409093c458e0416ed81f6d01bd5151c8501
https://www.virustotal.com/gui/file/cd44f8371731aa66124f2e11abcbe7cba476625920f1a9e5123e02e5d2aad62f
https://www.virustotal.com/gui/file/99219aa34910a8c28a6bfc96a6a58247fb1aa6c0cd0abd4af5445aa0ba359525
https://www.virustotal.com/gui/file/90961c5d548207db7c1695ffe82ef9cad529e6f1d987de9bfc67da9a045f67ff
https://www.virustotal.com/gui/file/90961c5d548207db7c1695ffe82ef9cad529e6f1d987de9bfc67da9a045f67ff
https://www.virustotal.com/gui/file/b4bbd543d7163e791713e8a767984873c374e868d3da7831e47a0d3fee8a290a
https://www.virustotal.com/gui/file/d89ff8e9bac2d21d4ec86c47f05e1a569ce9578e2309b96aa09c4a6ef02b8e02
https://www.virustotal.com/gui/file/59df7ebde2f9db5aae9ac2d7db37e0d6e278ddb1cfa7512edd61f233df0ff33a


4.3 Experiments and Evaluation

the PELID method in terms of intrusion detection.

4.3.2.1 Efficacy of PELID in Intrusion Detection

With the data augmentation algorithm AWGAN and the ensemble learning method PELID,

APELID achieves the outstanding performance of intrusion detection: 99.99% for Accuracy,

Precision, F1-score, and Recall for the CSE-CIC-IDS2018 dataset. Moreover, for the NLS-

KDD dataset, these evaluation metrics also are excellent values of 99.65% for all. Table 4.3

also shows that the AUC of all five single models is close to 100% for both datasets.

In particular, the AUC of the PELID model gives 100% results with CSE-CIC-IDS2018

and 99.99% with NSL-KDD. These two values clearly demonstrate the ideal classification

efficiency of the PELID model and basically allow it to handle the problem of data imbalance

in the classes.

Compared with individual AI models, as illustrated in Table 4.3, it is clear that PELID

gives outstanding F1 results from 0.04% (with the GBM model) to 2.24% (with DNN) with

CSE-CIC-IDS2018 dataset, from 0.17% (with XGB, GBM, and BME) to 1.63% (with DNN)

with NSL-KDD dataset. In addition, both FPR and FNR rates are lower than that of all five

models DNN, XGB, CBT, GBM, and BME. These results privilege us to respond to RQ1:

combining multiple AI models of PELID allow for improved network intrusion detection.

With a very high F1 and both FPR and FNR less than 0.37%, PELID can detect unknown

ntrusion attacks. In addition, the combination of five individual AI models in PELID will

also increase its resilience to adversarial attacks. In addition, the PELID model trained by

CSE-CIC-IDS2018 has nearly perfect intrusion detection performance: 99.99% F1-score,

100% AUC, and both zero FPR and FNR. Therefore, this model is selected for integration

into our IDPS in order to improve the detection efficacy of eleven types of intrusions.

4.3.2.2 Efficacy of PELID in Time Consumption

By performing the individual AI models in parallel, PELID theoretically permits to reduce

the execution time. Our experiments enable us to demonstrate it conclusively.

Figure 4.3 shows that the average time the PELID prediction of 14, 703 flows in the

NSL-KDD testing set from six different runnings is 251.81ms. Meanwhile, PELID needs an

average of 950.48ms from six runnings for analyzing 42, 635 flows in the CSE-CIC-IDS2018

testing set. Therefore, the average time to investigate one flow of the PELID is 17.13 µs and
22.29 µs in NSL-KDD and CSE-CIC-IDS2018, respectively. These experiments also indicate

that the PELID-based analysis of NSL-KDD is shorter than CSE-CIC-IDS2018. It comes

from the fact that the NSL-KDD has fewer features and labels than CSE-CIC-IDS2018:

40/71 and 4/12, respectively.

The time consumption of PELID with CSE-CIC-IDS2018 and NSL-KDD can be used to

determine the throughput of network traffics. Based on Figure 4.3, the PELID-based deep

analysis can perform 44,863 flows/s for the model trained by CSE-CIC-IDS2018 and 58,377

97



4.3 Experiments and Evaluation

DS1

DS2

1,422.7

284.35

950.48

251.81

445.53

174.61

Sequence Parallel Baseline

Figure 4.3: Comparing time consumption (milliseconds) between parallel and sequential

processing of PELID. ‘Baseline’ illustrates the average execution time of five individual AI

models.

flows/s for the model trained by NSL-KDD. By using notions of “mouse” and “elephant”

flows of Alvarez-Horcajo et al. [12], we constate that the PELID can analyze the network

throughput of 44, 863 ∗ 10KB ≃ 438MB/s ≃ 3.42Gps or 58, 377 ∗ 10KB ≃ 570MB/s ≃
4.45Gbps for mouse flows (less than 10 KB/flow), respectively CSE-CIC-IDS2018 or NSL-

KDD-based model. For elephant flows (more than 10 MB), PELID can reach up to

44, 863 ∗ 10MB ≃ 448, 630MB/s = 3, 504Gps or 58, 377 ∗ 10MB ≃ 583, 770MB/s =

4, 560Gbps, respectively CSE-CIC-IDS2018 or NSL-KDD-based model. Therefore, PELID-

based intrusion etection can be performed in large-scale networks. Consequently, RQ2 has

been resolved by all these experimental results.

The experiments in Table 4.3 show that the prediction in the CSE-CIC-IDS2018-based

PELID has higher precision, precision, and F1 score than in NSL-KDD-based PELID.

Therefore, we build an inline IDPS based on the Suricata solution and integrate the PELID

model trained by the CSE-CIC-IDS2018 dataset. It is presently successfully deployed in

inline mode to detect and prevent intrusions on our university’s 10 Gbps large-scale network.

It also demonstrated that the amount of time the PELID model requires to analyze a

network traffic flow in parallel is fast enough to qualify as real-time in practice. Note that

the open-source Cuckoo sandbox is also incorporated into our IDPS to hunt for malware

and contribute more to RQ3 responses.

98



4.3 Experiments and Evaluation

Table 4.5: Comparison of APELID with SOTA Methods (%)

Method Acc Prec F1 Rec

CSE-CIC-IDS2018

APELID (our) 99.99 99.99 99.99 99.99

MMM-RF [47] 99.98 − − −
GAN+RF [62] 99.83 98.68 95.04 92.76

KNN-MQBHOA [36] 99.78 99.56 99.65 99.87

HDLNIDS [87] 98.90 98.63 99.03 99.14

CNN [75] 98.17 95.00 94.00 95.00

AUE [114] 97.90 98.00 98.00 98.00

miniVGGNet [68] 96.99 97.46 97.04 96.97

NSL-KDD

APELID (our) 99.65 99.65 99.63 99.65

KNN-MQBHOA [36] 99.00 99.00 97.00 98.00

FFO-PNN [85] 98.99 96.97 96.97 96.97

DLNID [34] 90.73 86.38 89.65 93.17

GMM-WGAN-IDS [26] 86.59 88.55 86.88 86.59

Adaptive-Ensemble [35] 85.20 86.50 86.50 85.20

CAFE-CNN [98] 83.34 85.35 82.60 83.44

4.3.3 Comparison with SOTAs

The experimental findings of APELID are compared with those of other SOTA meth-

ods utilizing the same well-known datasets in order to evaluate our proposed approach.

The comparison findings, which were reported directly from their published papers, are

illustrated in Table 4.5. Note that these metrics are the macro average for the multi-

label classification. Due to the lack of confusion matrix in most SOTA works, we cannot

determine the FPR or FNR metric. However, the FNR, which can be derived from the True

Positive Rate (TPR) or the Recall metric, can be used to compare the number of missing

intrusion flows across various methods. It can be calculated using the following formula:

FNR = 1− TPR = 1−Recall.

Table 4.5 demonstrates that APELID outperforms SOTA and achieves the greatest

scores across all evaluation metrics. APELID achieves an F1-score of 99.99% and 99.65%,

respectively, which is higher than all SOTA models based on CSE-CIC-IDS2018 and NSL-

KDD. In addition, APELID achieves an outstanding true positive rate (or Recall) of 99.65%

and an exceptional false negative rate (FNR) of 0.00% and 0.34% for these well-known

datasets (as shown in Table 4.3). As a result, these comparisons enable us to validate the

99



4.4 NetIPS: Deployment of Network Intrusion Detection and Prevention

Figure 4.4: APELID-based NetIPS Architecture

efficacy of our APELID method and contribute more to answering RQ1.

4.4 NetIPS: Deployment of Network Intrusion Detec-

tion and Prevention

Based on the experimental findings and preceding explanation, it is evident that the PELID

model may be effectively utilized to conduct a more comprehensive analysis of network

traffic flows. Within this section, we provide in detail the practical implementation of the

APELID method, utilizing the PELID-based deep analysis specifically designed to detect

and prevent intrusions in large-scale networks effectively. The following subsections further

outline the techniques employed in NetIPS, such as hypermatching and userspace-based

analysis, to enhance the efficiency of deep analysis of network traffic flows.

4.4.1 Deployment Model

We built an IDPS named NetIPS to prove the ability of APELID in practice. Its ar-

chitecture is illustrated in Figure 4.4 and divided into three layers. The lower layer is

the network hardware, including SmartNIC (network accelerator) and traditional network

interfaces, used to analyze traffic and manage the NetIPS. The middle layer, Kernel Space,

controls the standard network hardware interfaces. In the top layer, User Space, we deploy

the essential components of NetIPS: the customized Suricata as a Rule-based Detector and

DeepInspector to perform the APELID-based intrusion detection.

The configuration of the appliance used in our real deployment is the same as the

experimental environment described in Section 2.5. In this deployment model, Suricata

v6.0.3 is used as the Rule-based Detector. However, in order to further analyze large-scale

100



4.4 NetIPS: Deployment of Network Intrusion Detection and Prevention

network flows, we have customized Suricata to implement the flow sensing strategy for

AI-powered deep analysis, as mentioned in Subsection 4.2.3.

For the DeepAnalyzer, the PELID model trained by CSE-CIC-IDS2018 is used for AI-

powered intrusion detection. In combination with the flow sensing strategy implemented

in the customized Suricata, our APELID method allows for efficient and effective real-time

large-scale network traffic analysis for intrusion detection.

4.4.2 Hypermatching for Signature-based Detector

In the proposed system architecture, shown as Figure 4.4, when the DPDK (Data Plane

Development Kit1) library packets are passed to the Decoder, they are decoded using a

packet decoder and sent to the Detectors. In the Rule-based Detector, the Hyperscan

technique is utilized to enhance the efficacy of the ruleset matching procedure. It matches

more effectively than other methods (such as Aho-Corasick, Boyer-Moore).

To increase the efficacy of pattern matching, Hyperscan divides a regex pattern into

multiple components and coordinates the order of component matching using fast string

matching. It would reduce the number of wasteful CPU cycles caused by redundant

matching, thereby improving performance. In addition, it provides multi-string matching

and single finite automaton matching algorithms that take advantage of SIMD operations

[106].

Each Detector module utilizes the Hyperscan library when analyzing and detecting

network intrusion attacks using a combination of rule-based matching and in-depth analysis.

It communicates with the PELID-based DeepInspector component via Unix sockets with

the interprocess communication mechanism. In the case of sensing enabled, the PCAP data

is sent to DeepAnalyzer for further analysis.

4.4.3 Accelerating AI-powered Intrusion Detection in User Space

The RX queue receives incoming packets for applications that employ network devices. The

Direct Memory Access (DMA) mechanism transfers it to the main memory. The system

must then be notified of the new packet and move the data into a buffer that has been

specifically allotted (Linux allocates these buffers for each packet). For the Linux operating

system, every new transmission the system receives requires a context-switching mechanism

to allocate these buffers. The userspace networking system will handle the packet [66] in

the subsequent phase.

The mechanism mentioned above causes congestion when more packets must be pro-

cessed due to increased resource consumption, thereby decreasing the system’s overall

efficacy. Particularly, the packet allocation mechanism in the kernel requires numerous

CPU-to-main-memory data transfer cycles. The data structure of the Linux network stack

1See more at https://www.dpdk.org

101

https://www.dpdk.org


4.5 Summary

is typically compatible with as many protocols as feasible. The excessively complex stack

slows down processing compared to simply analyzing network packets.

In addition to requiring a great deal of context switching, packet processing in the kernel

has a negative impact on performance. When a userspace application must send or receive

a payload, it makes a system call. The context is transferred from user mode to kernel

mode and back again, consuming a significant amount of system resources.

To improve NetIPS performance for controlling large-scale network traffic, we use a

Napatech SmartNIC NT40E3 4x10Gbps, instead of traditional NIC ports. All incoming

traffic will be passed directly to the DPDK library [41] are then analyzed by NetIPS as

follows:

1. Every incoming packet first goes to the ring buffer and then is passed to NetIPS via

the DPDK library. It also takes the role of checking this buffer area for new packets

received periodically.

2. If the ring buffer contains a new packet, NetIPS refers to the DPDK packet in the

buffer, a specially allocated memory area using pointers.

3. If the ring buffer contains no packets, NetIPS will queue the network devices under

the DPDK and refer to the buffer again.

In NetIPS, DeepInspector is also deployed in the userspace as an independent process.

Therefore, NetIPS enhances the speed and reduces the latency of flow inspection for large-

scale networks. The alert messages generated by DeepInspector are stored in a JSON file

with the same structure as Suricata. New rules created by DeepInspector are represented

as indicators of compromise (IoCs) and updated into the ruleset of Suricata.

Currently, our NetIPS is successfully deployed in inline mode to proactively detect and

prevent intrusions on the large-scale network of the Vietnam National University (VNU, a

federation of numerous universities) with a maximum throughput of 10 Gbps.

4.5 Summary

Chapter 4 addresses the critical challenge of deploying AI-powered intrusion detection and

prevention systems in large-scale, real-world environments, where requirements for real-

time performance, scalability, and operational reliability are paramount. Building upon

the data enhancements and ensemble modeling innovations developed in previous chapters,

this chapter introduces and evaluates a comprehensive architecture for practical, high-

throughput network defense.

The chapter begins by identifying key bottlenecks encountered by traditional AI-based

security systems when deployed in enterprise or large service provider networks, such as high

computational latency, limitations due to sequential inference, and insufficient adaptability

to sudden fluctuations in network traffic. These constraints significantly hinder the ability

to operate at wire speed and respond promptly to emerging threats.

102



4.5 Summary

To overcome these issues, Chapter 4 proposes the design and implementation of NetIPS,

a scalable intrusion prevention architecture that integrates several key innovations:

• Parallel ensemble inference: The system uses parallel processing techniques to con-

currently execute multiple deep learning and boosting models, drastically reducing

inference latency and allowing real-time analysis of high-speed data streams.

• Dynamic flow sensing strategy: NetIPS employs adaptive sensing methods to priori-

tize suspicious or high-risk traffic flows, ensuring efficient allocation of computational

resources without compromising detection effectiveness.

• User-space Processing Architecture: Using user-space packet processing frameworks,

the system achieves high flexibility and throughput, allowing seamless integration with

existing network infrastructure.

• Integrated sandbox: A notable practical contribution is the ability to dynamically

integrate a sandbox, where suspicious samples, especially files, are automatically trans-

ferred to an isolated environment (sandbox) for execution and behavioral analysis.

This enables detection, deep analysis, and automatic labeling of new or unclear sam-

ples, while significantly enhancing the capability to detect zero-day malware and

variants not previously seen in the training data. The sandbox feature also extends the

pipeline from detection to root cause analysis and supports early response to advanced

threats.

Evaluation metrics such as throughput, latency, and detection accuracy show that NetIPS

consistently maintains wire-speed performance and high detection rates. Furthermore,

comparative studies with other state-of-the-art systems demonstrate NetIPS’s superior scal-

ability and robustness, especially in scenarios involving sudden traffic surges or sophisticated

multistage attacks.

These research results have been partially presented in published works, including two

articles in respected journals (VVH-J1, VVH-J2) and one conference article (VVH-C1),

highlighting the novel and significant contributions discussed in this chapter. Specifically,

VVH-J1 and VVH-J2 describe the design, implementation, and real-world evaluation of

the NetIPS system, a scalable real-time AI-powered intrusion prevention architecture that

integrates parallel ensemble inference, dynamic flow sensing, user-space packet processing,

and sandbox integration. VVH-C1 presents and analyzes the combination of rule-based and

deep learning detection in practical environments. Together, these publications demonstrate

the creativity and scientific value of the contributions of the chapter, laying the foundation

for next-generation, real-world cybersecurity solutions.

103



Conclusions and Future Work

Contribution Highlights

Intrusion and malware attacks pose serious risks to modern digital infrastructure, pri-

marily due to their ability to bypass traditional defense layers and evade detection using

increasingly sophisticated techniques. These threats are often difficult to detect because

they can mimic legitimate behavior and hide within large-scale network traffic or complex

system environments. This dissertation approaches the problem from three main directions:

(i) designing data-centric augmentation strategies to improve the quality and balance of

machine learning datasets; (ii) developing robust hybrid ensemble frameworks that combine

deep learning and boosting algorithms to achieve superior detection capabilities; and (iii)

deploying large-scale network intrusion detection systems utilizing strategies using flow

sensing, parallel execution, and sandbox. The dissertation leverages advances in deep

learning and boosts learning and ensemble modeling to enhance overall model performance

while increasing resilience in intrusion detection.

Our dissertation systematically surveys topics related to intrusion detection, including

network attack techniques and threat detection, and synthesizes related work to identify

existing research gaps. From there, the directions and objectives are clearly defined,

focusing not only on balancing dataset and optimizing detection performance but also on

ensuring scalability, transparency, and real-world deployment. Through the development

and evaluation of augmentation dataset, feature optimization, mutual ensemble learning

techniques, and the successful deployment of a real-time AI-powered intrusion prevention

system. At the end of the study, the following contributions have clearly demonstrated the

achievement of all research objectives.

• Propose a machine learning pipeline with data augmentation and feature optimization

(WGAN-powered augmentation + SHAP-based feature optimization) to balance and

enhance the quality of training datasets, thereby improving the detection capability

for minority-class attacks.

• Introduce a deep and boosting mutual inference framework that strengthens the accu-

racy and resilience of intrusion and malware detection systems.

• Propose a solution to address data bottlenecks in large-scale network intrusion pre-

vention through a time-interval and frequency-based flow sensing strategy, combined

with parallelized inference of deep and boosting mutual inference models.

• Integrate the proposed methods into the NetIPS real-time intrusion detection and

prevention system, which leverages AI-based models at the user level to process high-

volume traffic (on a large scale), making it suitable for enterprise and ISP networks.

104



Conclusions and Future Work

Dissertation Limitations

Although the research has yielded promising results, it is important to acknowledge several

limitations.

• All tests were performed using fixed datasets that were prepared in advance, which

means that we cannot see how well the model would adapt to real-life situations or

when the data change over time.

• The NetIPS component has not yet been extensively validated in various real-world

scenarios. In particular, comprehensive evaluations of hardware performance and

deployment feasibility have not been conducted in large-scale production networks.

• The current experimental design does not include ablation studies to quantify the

contribution of individual components or techniques to the overall performance. Such

evaluations could provide more details on the effectiveness of the system and guide

future optimizations.

• The models were trained primarily on structured network or PE data. More complex

attack vectors, such as encrypted traffic, multistage malware, or supply chain attacks,

were not within the scope of this study.

Future Research Directions

Building upon the foundations laid in this dissertation, several research directions are open

for exploration:

• Online and continuous learning: Integrating online learning methods and incremental

retraining into detection pipelines could allow models to adapt to evolving threats and

handle dynamic environments more effectively.

• Future systems could use different types of data, such as how hosts behave, process

trees, user activities, and patterns in encrypted traffic, all within a single detection

framework.

• Automated response and defense integration: Improving detection systems with im-

mediate actions, like automatically blocking threats, updating rules, or prioritizing

alerts, can connect simple detection with active defense.

• Making it easier to understand decisions: Creating simple and user-friendly tools that

explain how AI systems work, particularly for endpoint systems, can build trust and

help security analysts work better with AI tools.

105



Personal Publications
Journals

VVH-J1 Hoang V. Vo and Hanh P. Du and Hoa N. Nguyen, AI-powered intrusion detec-

tion in large-scale traffic networks based on flow sensing strategy and parallel deep

analysis, Journal of Network and Computer Applications 220 (2023) 103735. DOI:

10.1016/j.jnca.2023.103735; (IF 8.0, SCI-E, top 2% Q1-Scopus)

VVH-J2 Hoang V. Vo and Hanh P. Du and Hoa N. Nguyen, APEPID: Enhancing real-time

intrusion detection with augmented WGAN and parallel ensemble learning, Computers

and Security 136 (2024) 103567. DOI: 10.1016/j.cose.2023.103567; (IF 5.4, SCI-E, top

7% Q1-Scopus)

VVH-J3 Hoang V. Vo and Hanh P. Du and Hoa N. Nguyen, MDOB: Enhancing Resilient

and Explainable AI-Powered Malware Detection Using Feature Set Optimization and

Mutual Deep+Boosting Ensemble Inference. Journal of Information Security and

Applications 2025 93 (2025) 104175. DOI: 10.1016/j.jisa.2025.104175; (IF 3.7, SCI-E,

top 8% Q1-Scopus)

Conferences

VVH-C1 Hoang V. Vo, Hoa N. Nguyen, Tu N. Nguyen, Hanh P. Du, SDAID: Towards a Hy-

brid Signature and Deep Analysis-based Intrusion Detection Method, in: GLOBECOM

2022 - 2022 IEEE Global Communications Conference, 2022, pp. 2615–2620. DOI:

10.1109/GLOBECOM48 099.2022.10001582. (WoS, Scopus)

VVH-C2 Hoang V. Vo, Duong H. Nguyen, Tuyen T. Nguyen, Hoa N. Nguyen, Duan V.

Nguyen, Leveraging AI-Driven Realtime Intrusion Detection by Using WGAN and

XGBoost, in: Proceedings of the 11th International Symposium on Information and

Communication Technology, Association for Computing Machinery, New York, NY,

USA, 2022, p. 208–215. DOI: 10.1145/3568562.3568660. (WoS, Scopus)

VVH-C3 Hoang V. Vo, Phong H. Nguyen, Hau T. Nguyen, Duy B. Vu, Hoa N. Nguyen, En-

hancing AI-Powered Malware Detection by Parallel Ensemble Learning, in: 2023 RIVF

International Conference on Computing and Communication Technologies (RIVF),

2023, pp. 503–508. DOI: 10.1109/RIVF60135.2023.10471855. (WoS)

VVH-C4 Hoang V. Vo, Hanh P. Du and Hoa N. Nguyen, AWDLID: Augmented WGAN and

Deep Learning for Improved Intrusion Detection, 2024 1st International Conference

On Cryptography And Information Security (VCRIS), Hanoi, Vietnam, 2024, pp. 1-6,

DOI: 10.1109/VCRIS63677.2024.10813392. (WoS)

106



Bibliography

[1] Mahmoud Abbasi, Amin Shahraki, and Amir Taherkordi. Deep learning for network

traffic monitoring and analysis (ntma): A survey. Computer Communications, 170:

19–41, 2021. ISSN 0140-3664. doi: https://doi.org/10.1016/j.comcom.2021.01.021.

[2] Razan Abdulhammed, Miad Faezipour, Abdelshakour Abuzneid, and Arafat Abumal-

louh. Deep and machine learning approaches for anomaly-based intrusion detection

of imbalanced network traffic. IEEE Sensors Letters, 3:1–4, 01 2019. doi: 10.1109/

LSENS.2018.2879990.

[3] Abebe Abeshu and Naveen Chilamkurti. Deep learning: The frontier for distributed

attack detection in fog-to-things computing. IEEE Communications Magazine, 56(2):

169–175, 2018. doi: 10.1109/MCOM.2018.1700332.

[4] Claire Adam-Bourdarios, Glen Cowan, Cécile Germain, Isabelle Guyon, Balázs Kégl,

and David Rousseau. The higgs boson machine learning challenge. In Proceedings of

the 2014 International Conference on High-Energy Physics and Machine Learning -

Volume 42, HEPML’14, page 19–55. JMLR.org, 2014.

[5] Priyanka Aggarwal, Sayyed F. Ahamed, Sachin Shetty, and Laura J. Freeman.

Selective targeted transfer learning for malware classification. In 2021 Third IEEE

International Conference on Trust, Privacy and Security in Intelligent Systems and

Applications (TPS-ISA), pages 114–120, 2021. doi: 10.1109/TPSISA52974.2021.

00013.

[6] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama.

Optuna: A next-generation hyperparameter optimization framework. In Proceedings

of the 25th ACM SIGKDD International Conference on Knowledge Discovery &

Data Mining, KDD ’19, page 2623–2631, New York, NY, USA, 2019. Association

for Computing Machinery. ISBN 9781450362016. doi: 10.1145/3292500.3330701.

[7] Samed Al and Murat Dener. Stl-hdl: A new hybrid network intrusion detection

system for imbalanced dataset on big data environment. Computers & Security, 110:

102435, 2021. ISSN 0167-4048. doi: https://doi.org/10.1016/j.cose.2021.102435.

[8] Mohammed Y. Aldarwbi, Arash H. Lashkari, and Ali A. Ghorbani. The sound of

intrusion: A novel network intrusion detection system. Computers and Electrical

Engineering, 104:108455, 2022. ISSN 0045-7906. doi: 10.1016/j.compeleceng.2022.

108455.

107



BIBLIOGRAPHY

[9] Abdullah Alghamdi and Ayad Barsoum. A comprehensive ids to detect botnet

attacks using machine learning techniques. In 2024 IEEE 3rd International Conference

on Computing and Machine Intelligence (ICMI), pages 1–6, 2024. doi: 10.1109/

ICMI60790.2024.10585846.

[10] Fahad T. ALGorain and Abdulrahman S. Alnaeem. Deep learning optimisation of

static malware detection with grid search and covering arrays. Telecom, 4(2):249–264,

2023. ISSN 2673-4001. doi: 10.3390/telecom4020015.

[11] Khaled Alrawashdeh and Carla Purdy. Toward an online anomaly intrusion detection

system based on deep learning. In 2016 15th IEEE International Conference on

Machine Learning and Applications (ICMLA), pages 195–200, 2016. doi: 10.1109/

ICMLA.2016.0040.

[12] Joaquin Alvarez-Horcajo, Diego Lopez-Pajares, José M. Arco, Juan Antonio Carral,

and Isáıas Martinez-Yelmo. Tcp-path: Improving load balance by network explo-

ration. In 6th IEEE International Conference on Cloud Networking, CloudNet 2017,

Prague, Czech Republic, September 25-27, 2017, pages 65–70. IEEE, 2017. doi:

10.1109/CloudNet.2017.8071533.

[13] H. S. Anderson and P. Roth. EMBER: An Open Dataset for Training Static PE

Malware Machine Learning Models. ArXiv e-prints, April 2018.

[14] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. Machine

Learning, 2017.

[15] Ömer Aslan and Abdullah Asim Yilmaz. A new malware classification framework

based on deep learning algorithms. IEEE Access, 9:87936–87951, 2021. doi: 10.1109/

ACCESS.2021.3089586.

[16] Aitor Belenguer, Jose A. Pascual, and Javier Navaridas. Göwfed: A novel federated

network intrusion detection system. Journal of Network and Computer Applications,

page 103653, 2023. ISSN 1084-8045. doi: https://doi.org/10.1016/j.jnca.2023.103653.

[17] Sonam Bhardwaj, Adrian Shuai Li, Mayank Dave, and Elisa Bertino. Overcoming

the lack of labeled data: Training malware detection models using adversarial domain

adaptation. Computers & Security, 140:103769, 2024. ISSN 0167-4048. doi: 10.1016/

j.cose.2024.103769.

[18] Bhoopesh Bhati, Garvit Chugh, Fadi Al-Turjman, and Nitesh Bhati. An improved

ensemble based intrusion detection technique using xgboost. Transactions on

Emerging Telecommunications Technologies, 32, 06 2021. doi: 10.1002/ett.4076.

108



BIBLIOGRAPHY

[19] Löıc Bontemps, Van Loi Cao, James McDermott, and Nhien-An Le-Khac. Collective

anomaly detection based on long short term memory recurrent neural network. CoRR,

abs/1703.09752, 2017.

[20] Austin Brown, Maanak Gupta, and Mahmoud Abdelsalam. Automated machine

learning for deep learning based malware detection. Computers & Security, 137:

103582, 2024. ISSN 0167-4048. doi: 10.1016/j.cose.2023.103582.

[21] Marta Catillo, Massimiliano Rak, and Villano Umberto. 2l-zed-ids: A two-level

anomaly detector for multiple attack classes. In Web, Artificial Intelligence and

Network Applications, WAINA2020, Advances in Intelligent Systems and Computing,

pages 687–696. Springer International Publishing, 2020. ISBN 978-3-030-44037-4. doi:

10.1007/978-3-030-44038-1 63.

[22] Radhika Chapaneri and Seema Shah. Enhanced detection of imbalanced malicious

network traffic with regularized generative adversarial networks. Journal of Network

and Computer Applications, 202:103368, 2022. ISSN 1084-8045. doi: https://doi.

org/10.1016/j.jnca.2022.103368.

[23] Nitesh Chawla, Kevin Bowyer, Lawrence Hall, and W. Kegelmeyer. Smote: Synthetic

minority over-sampling technique. J. Artif. Intell. Res. (JAIR), 16:321–357, 06 2002.

doi: 10.1613/jair.953.

[24] Jiaqi Chen, Chong Yuan, Jiashuo Li, Donghai Tian, Rui Ma, and Xiaoqi Jia.

Elamd: An ensemble learning framework for adversarial malware defense. Journal

of Information Security and Applications, 75:103508, 2023. ISSN 2214-2126. doi:

10.1016/j.jisa.2023.103508.

[25] Ratul Chowdhury, Shibaprasad Sen, Arpan Goswami, Shankhadeep Purkait, and

Banani Saha. An implementation of bi-phase network intrusion detection system

by using real-time traffic analysis. Expert Systems with Applications, 224:119831,

2023. ISSN 0957-4174. doi: 10.1016/j.eswa.2023.119831.

[26] Jiyuan Cui, Liansong Zong, Jianhua Xie, and Mingwei Tang. A novel multi-module

integrated intrusion detection system for high-dimensional imbalanced data. Applied

Intelligence, 04 2022. doi: 10.1007/s10489-022-03361-2.

[27] Preethi Devan and Neelu Khare. An efficient xgboost–dnn-based classification model

for network intrusion detection system. Neural Computing and Applications, 32(16):

12499–12514, aug 2020. ISSN 0941-0643. doi: 10.1007/s00521-020-04708-x.

[28] Jingyi Ding, Ziqing Chen, Li Xiaolong, and Baoxin Lai. Sales forecasting based

on catboost. In 2020 2nd International Conference on Information Technology and

Computer Application (ITCA), pages 636–639, 2020. doi: 10.1109/ITCA52113.2020.

00138.

109



BIBLIOGRAPHY

[29] Usha Divakarla, K Hemant Kumar Reddy, and K Chandrasekaran. A novel approach

towards windows malware detection system using deep neural networks. Procedia

Computer Science, 215:148–157, 2022. ISSN 1877-0509. doi: 10.1016/j.procs.2022.

12.017. 4th International Conference on Innovative Data Communication Technology

and Application.

[30] Ghanshyam Prasad Dubey and Dr. Rakesh Kumar Bhujade. Optimal feature

selection for machine learning based intrusion detection system by exploiting attribute

dependence. Materials Today: Proceedings, 47:6325–6331, 2021. ISSN 2214-7853. doi:

10.1016/j.matpr.2021.04.643. SI: TIME-2021.

[31] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li,

and Alexander Smola. Autogluon-tabular: Robust and accurate automl for structured

data. arXiv Machine Learning, 2020. doi: 10.48550/arXiv.2003.06505.

[32] Rawaa Farhan, Abeer Tariq, and Nidaaflaih Hassan. Performance analysis of flow-

based attacks detection on cse-cic-ids2018 dataset using deep learning deep learning

flow-based intrusion detection internet of thing (iot). Indonesian Journal of Electrical

Engineering and Computer Science, 20:1413–1418, 12 2020. doi: 10.11591/ijeecs.v20.

i3.pp1413-1418.

[33] Mohamed Amine Ferrag, Leandros Maglaras, Sotiris Moschoyiannis, and Helge

Janicke. Deep learning for cyber security intrusion detection: Approaches, datasets,

and comparative study. Journal of Information Security and Applications, 50, 12

2019. doi: 10.1016/j.jisa.2019.102419.

[34] Yanfang Fu, Yishuai Du, Zijian Cao, Qiang Li, and Wei Xiang. A deep learning model

for network intrusion detection with imbalanced data. Electronics, 11:898, 03 2022.

doi: 10.3390/electronics11060898.

[35] Xianwei Gao, Chun Shan, Changzhen Hu, Zequn Niu, and Zhen Liu. An adaptive

ensemble machine learning model for intrusion detection. IEEE Access, 7:82512–

82521, 2019. doi: 10.1109/ACCESS.2019.2923640.

[36] Reza Ghanbarzadeh, Ali Hosseinalipour, and Ali Ghaffari. A novel network intrusion

detection method based on metaheuristic optimisation algorithms. Journal of Ambient

Intelligence and Humanized Computing, pages 1–18, 03 2023. doi: 10.1007/s12652-

023-04571-3.

[37] Patrice Godefroid, Hila Peleg, and Rishabh Singh. Learn&fuzz: machine learning

for input fuzzing. In Proceedings of the 32nd IEEE/ACM International Conference

on Automated Software Engineering, page 50–59. IEEE Press, 2017. ISBN

9781538626849. doi: 10.5555/3155562.3155573.

110



BIBLIOGRAPHY

[38] Roopa Golchha, Apoorv Joshi, and Govind Prasad Gupta. Voting-based ensemble

learning approach for cyber attacks detection in industrial internet of things. Procedia

Computer Science, 218:1752–1759, 2023. ISSN 1877-0509. doi: 10.1016/j.procs.2023.

01.153. International Conference on Machine Learning and Data Engineering.

[39] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. 2016.

[40] Arnaldo Gouveia and Miguel Pupo Correia. Recent Advances in Security, Privacy,

and Trust for Internet of Things (IoT) and Cyber-Physical Systems (CPS), chapter

Network Intrusion Detection with XGBoost, pages 150–156. Chapman and Hall/CRC,

1st. edition, 2020. ISBN 9780429270567.

[41] Bingli Guo, Yu Shang, Yunquan Zhang, Wenzhe Li, Shan Yin, Yongjun Zhang, and

Shanguo Huang. Timeslot switching-based optical bypass in data center for intrarack

elephant flow with an ultrafast dpdk-enabled timeslot allocator. Journal of Lightwave

Technology, 37(10):2253–2260, 2019. doi: 10.1109/JLT.2019.2901600.

[42] You Guo, Hector Marco-Gisbert, and Paul Keir. Mitigating webshell attacks through

machine learning techniques. Future Internet, 12:12, 01 2020. doi: 10.3390/fi12010012.

[43] Neha Gupta, Vinita Jindal, and Punam Bedi. Cse-ids: Using cost-sensitive deep

learning and ensemble algorithms to handle class imbalance in network-based intrusion

detection systems. Computers & Security, 112:102499, 10 2021. doi: 10.1016/j.cose.

2021.102499.

[44] Arash Habibi Lashkari. Cicflowmeter-v4.0: a network traffic bi-flow generator and

analyser for anomaly detection. https://github.com/iscx/cicflowmeter, 08 2018.

[45] Hassan Jalil Hadi, Yue Cao, Sifan Li, Naveed Ahmad, and Mohammed Ali Alshara.

Fcg-mfd: Benchmark function call graph-based dataset for malware family detection.

Journal of Network and Computer Applications, 233:104050, 2025. ISSN 1084-8045.

doi: 10.1016/j.jnca.2024.104050.

[46] Hashida Haidros Rahima Manzil and Manohar Naik S. Dynamaldroid: Dynamic

analysis-based detection framework for android malware using machine learning

techniques. In 2022 International Conference on Knowledge Engineering and

Communication Systems (ICKES), pages 1–6, 2022. doi: 10.1109/ICKECS56523.

2022.10060106.

[47] Mohamed Hammad, Nabil Hewahi, and Wael Elmedany. Mmm-rf: A novel

high accuracy multinomial mixture model for network intrusion detection systems.

Computers & Security, 120:102777, 2022. ISSN 0167-4048. doi: https://doi.org/10.

1016/j.cose.2022.102777.

111



BIBLIOGRAPHY

[48] Jingwei Hao, Senlin Luo, and Limin Pan. Eii-mbs: Malware family classification via

enhanced adversarial instruction behavior semantic learning. Computers & Security,

122:102905, 2022. ISSN 0167-4048. doi: 10.1016/j.cose.2022.102905.

[49] Jamal Hussain and Samuel Lalmuanawma. Feature analysis, evaluation and compar-

isons of classification algorithms based on noisy intrusion dataset. volume 92, pages

188–198, 2016. doi: 10.1016/j.procs.2016.07.345. 2nd International Conference on

Intelligent Computing, Communication & Convergence, ICCC 2016, India.

[50] Sumaiya Thaseen Ikram, Aswani Kumar Cherukuri, Babu Poorva, Pamidi Sai

Ushasree, Yishuo Zhang, Xiao Liu, and Gang Li. Anomaly detection using xgboost

ensemble of deep neural network models. Cybernetics and Information Technologies,

21(3):175–188, sep 2021. ISSN 1314-4081. doi: 10.2478/cait-2021-0037.

[51] P.L.S. Jayalaxmi, Rahul Saha, Gulshan Kumar, Mamoun Alazab, Mauro Conti, and

Xiaochun Cheng. Pignus: A deep learning model for ids in industrial internet-of-

things. Computers & Security, page 103315, 2023. ISSN 0167-4048. doi: https:

//doi.org/10.1016/j.cose.2023.103315.

[52] Feng Jiang, Yunsheng Fu, B B Gupta, Fang Lou, Seungmin Rho, Fanzhi Meng, and

Zhihong Tian. Deep learning based multi-channel intelligent attack detection for

data security. IEEE Transactions on Sustainable Computing, 5:1–1, 01 2018. doi:

10.1109/TSUSC.2018.2793284.

[53] Gülsade Kale, Gazi Erkan Bostancı, and Fatih Vehbi Çelebi. Evolutionary feature

selection for machine learning based malware classification. Engineering Science and

Technology, an International Journal, 56:101762, 2024. ISSN 2215-0986. doi: 10.

1016/j.jestch.2024.101762.

[54] Gautam Karat, Jinesh M. Kannimoola, Namrata Nair, Anu Vazhayil, Sujadevi V

G, and Prabaharan Poornachandran. Cnn-lstm hybrid model for enhanced malware

analysis and detection. Procedia Computer Science, 233:492–503, 2024. ISSN 1877-

0509. doi: 10.1016/j.procs.2024.03.239. 5th International Conference on Innovative

Data Communication Technologies and Application (ICIDCA 2024).

[55] Gozde Karatas, Onder Demir, and Koray Sahingoz. Increasing the performance of

machine learning-based idss on an imbalanced and up-to-date dataset. IEEE Access,

8:32150–32162, 2020. doi: 10.1109/ACCESS.2020.2973219.

[56] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei

Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In

Proceedings of the 31st International Conference on Neural Information Processing

Systems, page 3149–3157, 2017. ISBN 9781510860964.

112



BIBLIOGRAPHY

[57] Murad Ali Khan, Naeem Iqbal, Imran, Harun Jamil, and Do-Hyeun Kim. An

optimized ensemble prediction model using automl based on soft voting classifier

for network intrusion detection. Journal of Network and Computer Applications, 212:

103560, 2023. ISSN 1084-8045. doi: https://doi.org/10.1016/j.jnca.2022.103560.

[58] Ansam Khraisat, Iqbal Gondal, Peter Vamplew, and Joarder Kamruzzaman. Survey

of intrusion detection systems: techniques, datasets and challenges. Cybersecurity, 2

(1):20, Jul 2019. ISSN 2523-3246. doi: 10.1186/s42400-019-0038-7.

[59] Sumit Lad and Amol Adamuthe. Improved deep learning model for static pe files

malware detection and classification. International Journal of Computer Network

and Information Security, 14:14–26, 04 2022. doi: 10.5815/ijcnis.2022.02.02.

[60] Giap V. Le, Tung H. Nguyen, Phuc D. Pham, On V. Phung, and Hoa N. Nguyen.

Guruws: A hybrid platform for detecting malicious web shells and web application

vulnerabilities. Transactions on Computational Collective Intelligence, 11370:184–

208, 2019. doi: 10.1007/978-3-662-58611-2 5.

[61] Ha V. Le, Tu N. Nguyen, Hoa N. Nguyen, and Linh Le. An efficient hybrid webshell

detection method for webserver of marine transportation systems. IEEE Transactions

on Intelligent Transportation Systems, 24(2):2630–2642, 2023. doi: 10.1109/TITS.

2021.3122979.

[62] JooHwa Lee and KeeHyun Park. Gan-based imbalanced data intrusion detection

system. Personal and Ubiquitous Computing, 25, 02 2021. doi: 10.1007/s00779-019-

01332-y.

[63] Sang-Woong Lee, Haval Mohammed sidqi, Mokhtar Mohammadi, Shima Rashidi,

Amir Masoud Rahmani, Mohammad Masdari, and Mehdi Hosseinzadeh. Towards

secure intrusion detection systems using deep learning techniques: Comprehensive

analysis and review. Journal of Network and Computer Applications, 187:103111,

2021. ISSN 1084-8045. doi: https://doi.org/10.1016/j.jnca.2021.103111.

[64] Joffrey Leevy and Taghi Khoshgoftaar. A survey and analysis of intrusion detection

models based on cse-cic-ids2018 big data. Journal of Big Data, 7, 11 2020. doi:

10.1186/s40537-020-00382-x.

[65] Yanan Li, Tao Qin, Yongzhong Huang, Jinghong Lan, ZanHao Liang, and Tongtong

Geng. Hdfef: A hierarchical and dynamic feature extraction framework for intrusion

detection systems. Computers & Security, 121:102842, 2022. ISSN 0167-4048. doi:

https://doi.org/10.1016/j.cose.2022.102842.

[66] Yi Li, Kaiqi Xiong, Tommy Chin, and Chengbin Hu. A machine learning framework

for domain generation algorithm-based malware detection. IEEE Access, 7:32765–

32782, 2019. doi: 10.1109/ACCESS.2019.2891588.

113



BIBLIOGRAPHY

[67] Peng Lin, Kejiang Ye, and Cheng-Zhong Xu. Dynamic network anomaly detection

system by using deep learning techniques. In Cloud Computing – CLOUD 2019, page

161–176. Springer-Verlag. doi: 10.1007/978-3-030-23502-4 12.

[68] Lan Liu, Pengcheng Wang, Jun Lin, and Langzhou Liu. Intrusion detection of

imbalanced network traffic based on machine learning and deep learning. IEEE Access,

9:7550–7563, 2021. doi: 10.1109/ACCESS.2020.3048198.

[69] Songsong Liu, Pengbin Feng, Shu Wang, Kun Sun, and Jiahao Cao. Enhancing

malware analysis sandboxes with emulated user behavior. Computers & Security,

115:102613, 2022. ISSN 0167-4048. doi: 10.1016/j.cose.2022.102613.

[70] Xinbo Liu, Yaping Lin, He Li, and Jiliang Zhang. A novel method for malware

detection on ml-based visualization technique. Computers & Security, 89:101682,

2020. ISSN 0167-4048. doi: 10.1016/j.cose.2019.101682.

[71] Xu-Ying Liu, Jianxin Wu, and Zhi-Hua Zhou. Exploratory undersampling for class-

imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B,

39(2):539–550, 2009. doi: 10.1109/TSMCB.2008.2007853.

[72] Maya Hilda Lestari Louk and Bayu Adhi Tama. Dual-ids: A bagging-based gradient

boosting decision tree model for network anomaly intrusion detection system. Expert

Systems with Applications, 213:119030, 2023. ISSN 0957-4174. doi: 10.1016/j.eswa.

2022.119030.

[73] Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model pre-

dictions. In Proceedings of the 31st International Conference on Neural Information

Processing Systems, page 4768–4777, Red Hook, NY, USA, 2017. Curran Associates

Inc. ISBN 9781510860964. doi: 10.5555/3295222.3295230.

[74] Benjamin Marais, Tony Quertier, and Christophe Chesneau. Malware analysis

with artificial intelligence and a particular attention on results interpretability. In

Distributed Computing and Artificial Intelligence, Volume 1: 18th International

Conference, pages 43–55. Springer International Publishing, 2022. ISBN 978-3-030-

86261-9. doi: 10.1007/978-3-030-86261-9 5.

[75] Mariama Mbow, Hiroshi Koide, and Kouichi Sakurai. Handling class imbalance

problem in intrusion detection system based on deep learning. International Journal

of Networking and Computing, 12:467–492, 2022. ISSN 2185-2847.

[76] Mamoru Mimura. Evaluation of printable character-based malicious pe file-detection

method. Internet of Things, 19:100521, 2022. ISSN 2542-6605. doi: 10.1016/j.iot.

2022.100521.

114



BIBLIOGRAPHY

[77] Preeti Mishra, Vijay Varadharajan, Uday Tupakula, and Emmanuel S. Pilli. A

detailed investigation and analysis of using machine learning techniques for intrusion

detection. IEEE Communications Surveys & Tutorials, 21(1):686–728, 2019. doi:

10.1109/COMST.2018.2847722.

[78] Gowtham Muniraju, Bhavya Kailkhura, Jayaraman J. Thiagarajan, Peer-Timo

Bremer, Cihan Tepedelenlioglu, and Andreas Spanias. Coverage-based designs

improve sample mining and hyperparameter optimization. IEEE Transactions on

Neural Networks and Learning Systems, 32(3):1241–1253, 2021. doi: 10.1109/TNNLS.

2020.2982936.

[79] Trivikram Muralidharan, Aviad Cohen, Noa Gerson, and Nir Nissim. File packing

from the malware perspective: Techniques, analysis approaches, and directions for

enhancements. ACM Computing Surveys, 55(5), 2022. ISSN 0360-0300. doi: 10.

1145/3530810.

[80] Sercan Gulburun Murat Dener. Clustering-aided supervised malware detection with

specialized classifiers and early consensus. Computers, Materials & Continua, 75(1):

1235–1251, 2023. ISSN 1546-2226. doi: 10.32604/cmc.2023.036357.

[81] Nilambari G. Narkar and Narendra M. Shekokar. A rule based intrusion detection

system to identify vindictive web spider. In 2016 International Conference on

Computing, Analytics and Security Trends (CAST), pages 271–275, 2016. doi:

10.1109/CAST.2016.7914979.

[82] Anjum Nazir and Rizwan Ahmed Khan. A novel combinatorial optimization based

feature selection method for network intrusion detection. Computers & Security, 102:

102164, 2021. ISSN 0167-4048. doi: https://doi.org/10.1016/j.cose.2020.102164.

[83] T. N. Nguyen, B.-H. Liu, N. Nguyen, B. Dumba, and J.-T. Chou. Smart grid

vulnerability and defense analysis under cascading failure attacks. IEEE Transactions

on Power Delivery, 36(4):2264–2273, 2021. doi: 10.1109/TPWRD.2021.3061358.

[84] Tuyen T. Nguyen, Phong H. Nguyen, Minh Q. Nguyen, and Hoa N. Nguyen. Tabgan-

powered data augmentation and explainable boosting-based ensemble learning for

intrusion detection in industrial control systems. In Computational Collective

Intelligence, pages 123–136. Springer Nature Switzerland, 2024. ISBN 978-3-031-

70819-0. doi: 10.1007/978-3-031-70819-0 10.

[85] Nadir Omer, Ahmed H. Samak, Ahmed I. Taloba, and Rasha M. Abd El-Aziz. A

novel optimized probabilistic neural network approach for intrusion detection and

categorization. Alexandria Engineering Journal, 72:351–361, 2023. ISSN 1110-0168.

doi: 10.1016/j.aej.2023.03.093.

115



BIBLIOGRAPHY

[86] Jakub Paľsa, Norbert Ádám, Ján Hurtuk, Eva Chovancova, Branislav Madoš, Martin

Chovanec, and Stanislav Kocan. Mlmd—a malware-detecting antivirus tool based on

the xgboost machine learning algorithm. Applied Sciences, 12:6672, 07 2022. doi:

10.3390/app12136672.

[87] Emad Qazi, Muhammad Faheem, and Tanveer Zia. Hdlnids: Hybrid deep-learning-

based network intrusion detection system. Applied Sciences, 13:4921, 04 2023. doi:

10.3390/app13084921.

[88] Quarkslab. Lief documentation. Available at: https://lief.quarkslab.com/

(accessed May 2025).

[89] Edward Raff, Jared Barker, Jared Sylvester, Robert Brandon, Bryan Catanzaro, and

Charles Nicholas. Malware detection by eating a whole exe. arXiv Machine Learning

(stat.ML), 2018. doi: 10.48550/arXiv.1710.09435.

[90] Ajeet Rai. Optimizing a new intrusion detection system using ensemble methods and

deep neural network. pages 527–532, 2020. doi: 10.1109/ICOEI48184.2020.9143028.

[91] Smitha Rajagopal, Poornima Kundapur, and Hareesha S. A stacking ensemble for net-

work intrusion detection using heterogeneous datasets. Security and Communication

Networks, pages 1–9, 01 2020. doi: 10.1155/2020/4586875.

[92] Keyan Ren, Shuai Yuan, Chun Zhang, Yu Shi, and Zhiqing Huang. Canet:

A hierarchical cnn-attention model for network intrusion detection. Computer

Communications, 2023. ISSN 0140-3664. doi: 10.1016/j.comcom.2023.04.018.

[93] Eréndira Rendón, Roberto Alejo, Carlos Castorena, Frank J. Isidro-Ortega, and

Everardo E. Granda-Gutiérrez. Data sampling methods to deal with the big data

multi-class imbalance problem. Applied Sciences, 10(4), 2020. ISSN 2076-3417. doi:

10.3390/app10041276.

[94] M. Rigaki and S. Garcia. Stealing and evading malware classifiers and antivirus at low

false positive conditions. Computers & Security, 129:103192, 2023. ISSN 0167-4048.

doi: 10.1016/j.cose.2023.103192.

[95] Ethan M. Rudd, David Krisiloff, Scott Coull, Daniel Olszewski, Edward Raff, and

James Holt. Efficient malware analysis using metric embeddings. Digital Threats, 5

(1), mar 2024. doi: 10.1145/3615669.

[96] Joshua Saxe and Konstantin Berlin. Deep neural network based malware detection

using two dimensional binary program features. In 2015 10th International Conference

on Malicious and Unwanted Software (MALWARE), pages 11–20, 2015. doi: 10.1109/

MALWARE.2015.7413680.

116

https://lief.quarkslab.com/


BIBLIOGRAPHY

[97] Mahmoud Said El Sayed, Nhien-An Le-Khac, Marianne A. Azer, and Anca D. Jurcut.

A flow-based anomaly detection approach with feature selection method against ddos

attacks in sdns. IEEE Transactions on Cognitive Communications and Networking,

8(4):1862–1880, 2022. doi: 10.1109/TCCN.2022.3186331.

[98] Erfan Shams, Ahmet Rizaner, and Ali Ulusoy. A novel context-aware feature ex-

traction method for convolutional neural network-based intrusion detection systems.

Neural Computing and Applications, 33:1–19, 10 2021. doi: 10.1007/s00521-021-

05994-9.

[99] Jay Sinha and M. Manollas. Efficient deep cnn-bilstm model for network intrusion

detection. In Proceedings of the 2020 3rd International Conference on Artificial

Intelligence and Pattern Recognition, AIPR ’20, page 223–231, New York, NY,

USA, 2020. Association for Computing Machinery. ISBN 9781450375511. doi:

10.1145/3430199.3430224.

[100] Romain Thomas. Lief - library to instrument executable formats.

https://lief.quarkslab.com/, apr 2017.

[101] Farhan Ullah, Shamsher Ullah, Gautam Srivastava, and Jerry Chun-Wei Lin. Ids-int:

Intrusion detection system using transformer-based transfer learning for imbalanced

network traffic. Digital Communications and Networks, 2023. ISSN 2352-8648. doi:

10.1016/j.dcan.2023.03.008.

[102] Laurens van der Maaten and Geoffrey Hinton. Viualizing data using t-sne. Journal

of Machine Learning Research, 9:2579–2605, 11 2008.

[103] Mihai Vasilescu, Laura Gheorghe, and Nicolae Tapus. Practical malware analysis

based on sandboxing. In 2014 RoEduNet Conference 13th Edition: Networking in

Education and Research Joint Event RENAM 8th Conference, pages 1–6, 2014. doi:

10.1109/RoEduNet-RENAM.2014.6955304.

[104] Parag Verma, Shayan Anwar, Shadab Khan, and Sunil B Mane. Network intrusion

detection using clustering and gradient boosting. In 2018 9th International Conference

on Computing, Communication and Networking Technologies (ICCCNT), pages 1–7,

2018. doi: 10.1109/ICCCNT.2018.8494186.

[105] R. Vinayakumar, Mamoun Alazab, K. P. Soman, Prabaharan Poornachandran,

Ameer Al-Nemrat, and Sitalakshmi Venkatraman. Deep learning approach for

intelligent intrusion detection system. IEEE Access, 7:41525–41550, 2019. doi:

10.1109/ACCESS.2019.2895334.

[106] Xiang Wang, Yang Hong, Harry Chang, KyoungSoo Park, Geoff Langdale, Jiayu Hu,

and Heqing Zhu. Hyperscan: A fast multi-pattern regex matcher for modern CPUs. In

117



BIBLIOGRAPHY

16th USENIX Symposium on Networked Systems Design and Implementation (NSDI

19), pages 631–648, Boston, MA, February 2019. USENIX Association. ISBN 978-1-

931971-49-2.

[107] Dong-Ok Won, Yong-Nam Jang, and Seong-Whan Lee. Plausmal-gan: Plausible

malware training based on generative adversarial networks for analogous zero-day

malware detection. IEEE Transactions on Emerging Topics in Computing, 11(1):

82–94, 2023. doi: 10.1109/TETC.2022.3170544.

[108] Limin Yang, Arridhana Ciptadi, Ihar Laziuk, Ali Ahmadzadeh, and Gang Wang.

Bodmas: An open dataset for learning based temporal analysis of pe malware. In

2021 IEEE Security and Privacy Workshops (SPW), pages 78–84, 2021. doi: 10.

1109/SPW53761.2021.00020.

[109] Tao Yi, Xingshu Chen, Yi Zhu, Weijing Ge, and Zhenhui Han. Review on the

application of deep learning in network attack detection. Journal of Network and

Computer Applications, 212:103580, 2023. ISSN 1084-8045. doi: https://doi.org/10.

1016/j.jnca.2022.103580.

[110] Xiao-Dong Zeng, Sam Chao, and Fai Wong. Optimization of bagging classifiers

based on sbcb algorithm. In 2010 International Conference on Machine Learning

and Cybernetics, volume 1, pages 262–267, 2010. doi: 10.1109/ICMLC.2010.5581054.

[111] Hongpo Zhang, Lulu Huang, Chase Q. Wu, and Zhanbo Li. An effective convolutional

neural network based on smote and gaussian mixture model for intrusion detection

in imbalanced dataset. Computer Networks, 177:107315, 2020. ISSN 1389-1286. doi:

10.1016/j.comnet.2020.107315.

[112] Lei Zhang, Shuaimin Jiang, Xiajiong Shen, Brij B. Gupta, and Zhihong Tian. PWG-

IDS: an intrusion detection model for solving class imbalance in iiot networks using

generative adversarial networks. CoRR, abs/2110.03445, 2021.

[113] Xiaoqing Zhang, Fei Yang, Yue Hu, Zhao Tian, Wei Liu, Yifa Li, and Wei She. Ranet:

Network intrusion detection with group-gating convolutional neural network. Journal

of Network and Computer Applications, 198:103266, 2022. ISSN 1084-8045. doi:

https://doi.org/10.1016/j.jnca.2021.103266.

[114] Feng Zhao, Hao Zhang, Jia Peng, Xiaohong Zhuang, and Sang-Gyun Na. A semi-self-

taught network intrusion detection system. Neural Computing and Applications, 32,

12 2020. doi: 10.1007/s00521-020-04914-7.

118


	Declaration of Authorship
	Acknowledgements
	Abstract
	List of Abbreviations
	Introduction
	Motivation
	Research Challenges
	Research Objectives
	Research Scope
	Research Methodologies
	Research Contributions
	Thesis Structure

	1 Preliminaries and Literature Reviews
	1.1 Fundamental Concepts
	1.1.1 Intrusion Detection System
	1.1.2 Common Types of Network Attacks
	1.1.3 Machine Learning in Cybersecurity
	1.1.4 Class Imbalance in Cybersecurity Dataset
	1.1.5 Ensemble Learning in Intrusion Detection

	1.2 Approaches to Threat Detection
	1.2.1 AI-powered Intrusion Detection
	1.2.2 AI-powered Malware Detection
	1.2.3 Handling Imbalanced Datasets

	1.3 Related Work
	1.3.1 Deep and Boosting Learning for Intrusion Detection
	1.3.2 Deep and Boosting Learning for Malware Detection
	1.3.3 Data Augmentation

	1.4 Dataset Collection
	1.5 Evaluation Metrics
	1.6 Research Gaps and Approach Direction
	1.7 Summary

	2 Enhancing AI-powered Intrusion Detection with Data Augmentation and Feature Optimization
	2.1 Problem Statement
	2.2 Approach Direction
	2.3 Training Dataset Augmentation
	2.3.1 Difficulty-Aware-based Data Augmentation
	2.3.2 AWGAN-based Data Augmentation

	2.4 Feature set Optimization
	2.4.1 Feature Extraction and Cleaning
	2.4.2 Feature Vectorizing
	2.4.3 Feature Normalization
	2.4.4 SHAP-based Feature Set Optimization

	2.5 Experiments and Evaluation
	2.5.1 Dataset Preparation
	2.5.2 Results and Evaluation

	2.6 Summary

	3 Enhancing AI-powered Intrusion Detection with Mutual Deep and Boosting Inference
	3.1 Problem Statement
	3.2 Network Intrusion Detection via AI-Powered Deep Analysis
	3.2.1 Direction Approach
	3.2.2 Network Traffic Flow Modeling
	3.2.3 DNN-based Intrusion Detection Algorithm
	3.2.4 Boosting-based Intrusion Detection Algorithm 
	3.2.5 Hyperparameter Optimization
	3.2.6 Experiments and Evaluation
	3.2.7 Comparison with SOTAs

	3.3 Malware Detection via Mutual Deep and Boosting Ensemble Learning
	3.3.1 Approach Direction
	3.3.2 Mutual Deep and Boosting Learning
	3.3.3 Combination of Voting and Stacking Ensemble Learning
	3.3.4 Hyperparameter Optimization
	3.3.5 Experiments and Evaluation
	3.3.6 Comparison with SOTAs

	3.4 Summary

	4 Holistic Large-Scale AI-powered Intrusion Prevention with Flow Sensing Strategy and Parallel Ensemble Inference
	4.1 Problem Statement
	4.2 Proposed Holistic Intrusion Detection Framework
	4.2.1 Approach Direction
	4.2.2 Parallel Ensemble Inference-based Intrusion Detection
	4.2.3 Strategy for AI-powered real-time intrusion detection
	4.2.4 Hunting Malware by Sandbox Approach

	4.3 Experiments and Evaluation
	4.3.1 Experimental Results
	4.3.2 Evaluation
	4.3.3 Comparison with SOTAs

	4.4 NetIPS: Deployment of Network Intrusion Detection and Prevention 
	4.4.1 Deployment Model
	4.4.2 Hypermatching for Signature-based Detector
	4.4.3 Accelerating AI-powered Intrusion Detection in User Space

	4.5 Summary

	Conclusions and Future Work
	Contribution Highlights
	Dissertation Limitations
	Future Research Directions

	Personal Publications
	Journals
	Conferences

	BIBLIOGRAPHY

